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ABSTRACT

MORAES, Luis Fernando de Sousa, D.Sc., Universidade Federal de Vigosa,
February, 2018. Effects of dietary green pea and Hibiscus sabdariffa L. on
intestinal diseases in mice. Adviser: Maria do Carmo Gouveia Peluzio. Co-
advisers: Helen Hermana Miranda Hermsdorff and Lisiane Lopes da Conceigao.

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths
worldwide. Present data has reported the role of anthocyanin-rich food/extract in
increasing fecal short-chain fatty acids (SCFA) concentrations and NK cells
infiltration in the large intestine mucosa, thus contributing to prevent preneoplastic
lesions formation. We have observed that anthocyanins/anthocyanidins might
prevent colorectal tumorigenesis due to stimulation of cell cycle arrest and
apoptosis mechanisms, besides downregulation of pro-inflammatory and
metastasis invasive signaling mechanisms. As inflammatory bowel disease, such
as colitis, has been related to colorectal carcinogenesis, we have reported that
green pea supplementation abrogates the severity of dextran sodium sulfate
(DSS)-induced colitis in high-fat diet (HFD)-fed mice due to suppression of
inflammation, mucin depletion and endoplasmic reticulum stress in the colon. We
also have observed that supplementation with 5 or 10% dietary HS attenuated
colonic ACF development in the distal colon. Total ACF counts per mouse was
reduced by almost 29.0% in HS supplemented groups when compared to control.
Fecal butyric and propionic acids concentrations, in addition to NK cell infiltration,
were increased with 10% dietary HS supplementation. Hepatic catalase activity
was enhanced in 10% dietary HS-treated mice when compared to control group.
We might infer that dietary HS might prevent preneoplastic lesions formation due
to modulation of SCFA and Natural Killer (NK) cells infiltration.



RESUMO

MORAES, Luis Fernando de Sousa, D.Sc., Universidade Federal de Vigosa,
fevereiro de 2018. Efeitos da ervilha verde e do Hibiscus sabdariffa L. em
doencgas intestinais em camundongos. Orientadora: Maria do Carmo Gouveia
Peluzio. Coorientadoras: Helen Hermana Miranda Hermsdorff e Lisiane Lopes da
Conceicgao.

O cancer colorretal (CCR) é mundialmente a terceira maior causa de morte
relacionadas aos canceres em geral. Os dados atuais relatam o papel do
alimento/extrato rico em antocianinas no aumento das concentracdes fecais de
acidos graxos de cadeia curta (AGCC) e na infiltracdo de células NK (natural
killers) na mucosa do intestino grosso, o que pode contribuir para a preveng¢ao da
formacdo de lesdes pré-neoplasicas. Observamos que as antocianinas/
antocianidinas podem prevenir a tumorigénese colorretal devido a estimulagéo
dos mecanismos de apoptose e bloqueio do ciclo celular, além de mitigar os
mecanismos de sinalizagao pro-inflamatéria e de metastase invasiva. Como a
doenca inflamatdria intestinal, a exemplo da colite ulcerativa, tem sido relacionada
a carcinogénese colorretal, relatamos que a suplementagcdo de ervilha verde
atenua os sintomas da colite induzida por sulfato dextrano de sédio (DSS) em
camundongos alimentados com dieta rica em gordura (HFD) devido a supresséao
da inflamacgao, deplecdo de mucina e estresse do reticulo endoplasmatico no
célon. Também observamos que a suplementagdo com 5 ou 10% de Hibiscus
sabdariffa L. (HS) na dieta atenuou o desenvolvimento de focos de criptas
aberrantes (FCA) no cdlon distal. A contagem total de ACF por camundongo foi
reduzida em quase 29,0% nos grupos suplementados com HS quando
comparados ao controle. As concentragdes de acido butirico e propidnico nas
fezes, além da infiltracdo de células NK, foram aumentadas com a suplementagao
de 10% de HS na dieta. A atividade da catalase hepatica foi aumentada em 10%
nos camundongos tratados com HS quando comparados ao grupo controle.
Podemos inferir que o HS dietético pode prevenir a formacado de lesdes pré-
neoplasicas devido a modulacao de infiltracdo de células SCFA e Natural Killer
(NK).

Vi



1. GENERAL INTRODUCTION

Cancer is a multifactorial chronic disease mainly identified by unrestrained clonal
expansion and spread of abnormal cells (1). In Brazil, cancer has been ranked as
the second leading cause of death, after cardiac and cerebrovascular diseases
(2). Since cancer can be initiated from an interaction between environmental,
genetic, and lifestyle factors, controlling behavioral risk factors along with health
services organizations has become a challenge regarding cancer control in

developing countries (3).

Specifically, colorectal cancer (CRC) involves the onset of aberrant crypt foci
(ACF) and micro-adenomas that will lead to an increased replication of the upper
crypt cells and posterior formation of adenomatous polyps (4). Recently, in Brazil
this malignancy appears as the second and third most common cancer in women

and men, respectively (2).

According to a meta-analysis (5), dietary intake patterns, e.g. lower consumption
of phytochemical-rich foods, have been reported as a significant risk factor for CRC
development, besides inflammatory bowel disease, such as ulcerative colitis (5), a
chronic inflammatory disorder that affects both mucosa and submucosa of the
colon. Despite its unclear etiology, recent evidences have strongly suggested that
phytochemical-rich foods reduce leukocytes infiltration, mitigate overproduction of
inflammatory cytokines, and suppress mucin depletion (6-8). These events
contribute to ameliorate ulcerative colitis symptoms, and therefore, might also

prevent the onset of preneoplastic lesions or CRC development.

On the one hand, consumption of green pea, a notable source of fiber and
polyphenolics (9, 10), has suppressed inflammation in DSS-induced colitis in mice
(11). Hibiscus sabdariffa L. (HS) calyces, on the other hand, are a cheap and
natural rich source of anthocyanin (12, 13) that can be also stimulate for human
consumption, such as teas, jams, and jellies. HS extracts have been implicated as

chemopreventive, anti-tumor, and hepatoprotective agents (14, 15).



In order to provide a better understanding on intestinal diseases and polyphenol-
rich food, this doctoral thesis has been grounded in three main hypotheses. The
first paper, entitled “Anthocyanins/anthocyanidins and colorectal cancer: what is
behind the scenes?”, published in Critical Reviews in Food Science and Nutrition
(2016 Impact Factor: 6.077), has elucidated the hypothesis that such
phytochemicals indeed exert anti-tumor effects in vivo and in vitro by stimulating
cell cycle arrest and apoptosis mechanisms, besides downregulating pro-
inflammatory and metastasis invasive signaling pathways. The second paper,
entitled “Dietary green pea protects against DSS-induced colitis in mice challenged
with high-fat diet” and published in Nutrients (2016 Impact Factor: 3.550), has
elucidated that green pea supplementation mitigates the severity of dextran
sodium sulfate (DSS)-induced colitis in high-fat diet (HFD)-fed mice due to
suppression of inflammation, mucin depletion and endoplasmic reticulum stress in
the colon. It is worth to mention that this research was part of my doctoral training
period at Washington State University — WA, United States of America, under
supervision of professor Mei-Jun Zhu. In addition, it has been observed that dietary
HS might prevent preneoplastic lesions formation due to modulation of fecal SCFA
and Natural Killer (NK) cells infiltration. This research was supervised by professor
Peluzio and the outcomes are intended to be published in The Journal of
Nutritional Biochemistry (2016 Impact Factor: 4.518) with the title “Dietary Hibiscus
sabdariffa L. mitigates preneoplastic lesions development in distal colon by
increasing fecal short-chain fatty acids concentration and infiltration of Natural

Killer cell”.
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2. AIMS OF THE STUDY
2.1. GENERAL AIM

To assess the mechanisms by which anthocyanins exert beneficial effects against
colorectal carcinogenesis and to highlight whether dietary supplementation with
green pea or HS might ameliorate the symptoms in DSS-induced colitis in HFD-

fed mice or prevent preneoplastic lesions development, respectively.

2.2. SPECIFIC AIMS

- To summarize the current scientific literature linking the mechanisms how

anthocyanins might prevent colorectal carcinogenesis (Article 1);

- To verify whether green pea supplementation is able to attenuate DSS-induced

colitis symptoms in HFD-fed mice by reducing neutrophil infiltration (Article 2)

- To assess whether dietary HS supplementation is able to prevent preneoplastic

lesions formation by (Article 3):

* Characterizing HS calyces according to its nutritional composition;

* Characterizing HS calyces according to its polyphenols and anthocyanin
content;

* Conducting an in vivo experiment, where colorectal carcinogenesis-
induced BALB/c mice will be supplemented with 5% or 10% dietary HS;

* Counting ACF in the large intestine of BALB/c mice induced to colorectal
tumorigenesis;

* Quantifying fecal SCFA concentrations;
* Determining the leukocyte profile in the large intestine mucosa;

* Evaluating hepatic enzyme activity and hepatic-related serum markers.



3. RESULTS

3.1. ARTICLE 1 (REVIEW) — Anthocyanins/anthocyanidins and colorectal cancer:

What is behind the scenes?

Luis Fernando de Sousa Moraes, Xiaofei Sun, Maria do Carmo Gouveia Peluzio,
Mei-Jun Zhu

Paper published in Critical Reviews in Food Science and Nutrition (Impact
Factor 2016: 6.077)
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Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes?

Luis Fernando de Sousa Moraes™®, Xiaofei Sun®, Maria do Carmo Gouveia Peluzio®, and Mei-Jun Zhu?
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ABSTRACT KEYWORDS

Colorectal cancer (CRC) is one of the most common cause of cancer death. Phytochemicals, espedially Polyphenols; anthocyanins;
anthocyanins/anthocyanidins (A/A), have gathered attention of the scientific community owing to their anti-  anthocyanidins; colorectal
inflammatory, antioxidant, and cancer-inhibitory properties. In this review, we discussed the possible ~ Crcinogenesis;
mechanisms whereby A/A exhibit intestinal anticarcinogenic chamcteristics. Anthocyanins/anthocyanidins ~ chemopreventive

inhibit the pro-inflammatory NF-«B pathway, attenuate Wnt signaling and suppress abnomal epithelial cell hm::;gﬁ:
proliferation. In addition, A/A induce mitochondriatmediated apoptosis and downregulate Akt/mTOR ;ﬂ,my ’

(mammalian target of rapamycin) pathway. Furthemore, activation of AMP-activated protein kinase (AMPK)
and sirtuin 1 (SIRT1) also contributes to the anti-carcinogenic effects of A/A. Finally, downregulation of
metalloproteinases (MMPs) by A/A inhibits tumor invasion and metastasis. In conclusion, A/A exert their
anti-tumor effects against colorectal carcinogenesis via multiple mechanisms, providing insights into the use
of A/A as a natural chemopreventive intervention on major colorectal carcinogenesis.

Abbreviations: A/A: anthocyanins/anthocyanidins; ACF: aberrant aypt foci; Akt protein kinase B; AMPK: AMP-acti-
vated protein kinase; AOM: azoxymethane; APAF1: apoptotic protease-activating factor 1; Apc: adenomatous poly-
posis li; ARE: anthocyanin-rich extract; ATM: ataxia telangiectasia mutated; ATR: ataxia telangiectasia and Rad3-
related; Bax: Bd-2-associated X protein; Bak: Bcl-2-killer; Bcl-2: B-cell lymphoma 2; Bcl-xL: Bcell lymphoma-extra
large; BH3: Bcl-2 homology 3; BW: body weight; CAD: caspase-activated deoxyribonuclease; caspase: cysteine aspar-
tyk-specific protease; COX-2: cyclooxygenase-2; CRB: crumb complex; CRC: colorectal cancer; DSS: dextran sodium
sulfate; ERK: extracellular signal-regulated kinases; IFN-y: interferon gamma; IxBer: | kappa B alpha; IKKer: | kappa B
kinase alpha; IL: interleukin; iNOS: inducible nitric oxide synthase; Ki-67: marker of proliferation antigen Ki-67; MAPK:
mitogen activated protein kinase; MCT: medium-chain triacylglycerol; MMPs: metalloproteinases; mTOR: mamma-
lian target of mpamycin; NF-«B: nuclear factor kappa-light-chain-enhancer of activated B cells; p21: cyclin-depen-
dent kinase inhibitor; p53: tumor suppressor protein; Par. partitioning complex; PARP: poly ADP-ribose polymerase;
PCNA: proliferating cell nuclear antigen; PGE,: prostaglandin E2; pRB: retinoblastoma protein; RNS: reactive nitrogen
species; ROS: reactive oxygen spedes; Scrib: scribble complex; SIRT1: sirtuin 1; SMAC: second mitochondria-derived
activator of caspases; STAT-3: signal transducer and activator of transcription 3; TNF-c: tumor necrosis factor alpha;
VEGF: vasaular endothelial growth factor; Wnt: Wingless and Int; XIAP: X-linked inhibitor of apoptosis protein

1. Infroduction onset. It is worth clarifying that although antioxidant-rich

Colorectal cancer (CRC) appears to be the second most
common cause of cancer death in the United States (Siegel,
Miller, and Jemal, 2016). CRC affects more than one mil-
lion patients every year worldwide (Ferlay et al, 2015).
About 35% of overall cancer-related mortality is lifestyle-
dependent (Doll and Peto, 1981). For instance, high dietary
intake of fruits, vegetables, and whole grains has strongly
sustained the inverse correlation between carcinogenesis
and diet habits (Surh, 2003). Since inflammatory bowel dis-
ease (IBD) patients are predisposed to triggering the onset
of colitis-assodated CRC (Rhodes and Campbell, 2002) and
only 15% of CRC occur due to inherited gene defect (Jack-
son-Thompson et al., 2006), it can be hypothesized, there-
fore, that inflammation management by antioxidant-rich
food/extracts consumption could be a potential strategy to
reduce the inflammation grade and, hence, prevent CRC

food/extract intake itself is possibly not a recommended
option to either treat or cure CRC, developing good dietary
habits benefits towards intestinal health against the inflam-
mation state.

In this sense, anthocyanins/anthocyanidins (A/A) have
been emerged as promising compounds capable of promoting
relevant health benefits in CRC (Shashirekha, Mallikarjuna,
and Rajarathnam, 2015), owing to its known antioxidant and
anti-inflammatory properties (Ravipati et al., 2012). Never-
theless, the important remaining question is how A/A
exert its beneficial effects on CRC. Thus, in this review, we
aimed at identifying the possible mechanisms whereby A/A
exhibit intestinal anticarcinogenic characteristics. In addi-
tion, the positive effects of other common polyphenols on
colorectal carcinogenesis, although previously reviewed else-
where (Juan, Alfaras, and Planas, 2012; Kotecha, Takami, and

CONTACT Mei-Jun Zhu @) meijunzhuéwsu.edu ) School of Food Sdence, Washington State University, Pullman, WA 99164, USA.
Color versions of one or more of the figures in the artide can be found online at www_tandfonline.com/bfsn.

©2017 Taylor & Francis Group, LLC
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Espinoza, 2016; Priyadarsini and Nagini, 2012; Surh, 2003),
are briefly introduced to contextualize and show the relevance
of A/A as strong phytochemical compounds.

2. Polyphenols: Overview and beneficial effects
on CRC

Dietary polyphenols or phenolic compounds are natural
antioxidants present in plant-based foods, such as fruits, vege-
tables, tea, essential oils and their by-products (Zhang and
Tsao, 2016), which can prevent the onset of chronic diseases,
thus enhanding human health (Scalbert et al., 2007). Polyphe-
nols can be mainly categorized into three different groups
according to their chemical structures: phenolic adids, flavo-
noid and non-flavonoid compounds (Zhang and Tsao, 2016).
Table 1 summarizes the main findings related to the benefidal
effects of bioactive compounds, mostly flavonoids, on colorec-
tal carcinogenesis in mice.

The common signaling pathway underlying lower dysplasia
and tumor incidence in polyphenals-treated mice is believed to
be related to cell cyde arrest and decreased expression of
inflammatory markers, such as tumor necrosis factor (TNF)-a,
interfferon gamma (IFN-y), interleukin (IL)-6, and cyclooxy-
genase -2 (COX-2) (Table1).

In particular, A/A are synthesized via the flavonoid pathway
(Holton and Cornish, 1995) and have gained attention of the
sdentific community owing to their anti-inflammatory, antiox-
idant, and cancer-inhibitory properties (Bowen-Forbes et al,
2010). Among flavonoids, A/A provide strong electron-donat-
ing ability, which are comparable to carotenoids, one of the
most remarkable natural quencher of oxygen singlet (De Rosso
et al, 2008). Additionally, A/A can be easily found and
extracted from edible source plants (Cissé et al., 2012).

3. Anthocyanins/anthocyanidins: Overview
and anticarcinogenic effects

Anthocyanins comprise over 500 water-soluble compounds,
naturally found at greater quantities in most colored fruits, veg-
etables, leaves and flowers (Wu et al, 2006; McGhie et al,
2003). Chemically, anthocyanins are dassified as glycosides of
polyhydroxy or polymethoxy derivatives of 2-phenylbenzo-
pyrylium (Wu et al,, 2007) and, thus, consist of two benzoyl
rings (A and B) in between a heterocyclic ring (C), which in
turn form the flavylium cation, as shown in Figure 1.

Anthocyanins most commonly present a tri-, di- or mono-
saccharide unit. Hydrolyzed anthocyanins yield anthocyanidins
and sugars (McGhie and Walton, 2007). Therefore, the so-
called anthocyanidins or anthocyanin aglycones possess no
sugar moiety attached to the molecular structure of the flavy-
lium cation and are defined according to the substitute group -
hydrogen atom, hydroxide or methoxy - that can be placed at
the R1 and R2 positions (Figure 1). For instance, cyanidin is an
anthocyanidin represented by the flavylium cation holding
both ~-OH and -H substitutes at the R1 and R2 positions,
respectively. Although several anthocyanidins have been prop-
erly identified, the anthocyanins mainly emerge from cyanidin,
delphinidin, perlargonidin, peonidin, malvidin, and petunidin
(Jing et al., 2008).

To date, studies evaluating the effects of A/A on intestinal
cancer in humans are sparse. In a previous study in CRC
patients, a 7-day treatment with a commercial anthocyanin-rich
extract (ARE) from bilberry prior to tumor resection reduced
the proliferation index, elucidated by lower Ki-67 expression,
and increased the apoptotic index, observed by higher deaved
caspase-3 expression (Thomasset et al, 2009). Thus, further
dinical trials should be more encouraged to provide results on
A/A as a potential chemopreventive intervention.

On the other hand, the chemopreventive properties of A/A,
indeed, have been successfully reported in rodent models for
carcdnogenesis (Hagiwara et al., 2001; Bobe et al, 2006). A 14-
week supplementation with ARE from bilberry, chokeberry, and
grape resulted in reduction of colonic aberrant crypt foci (ACF,
preneoplastic lesions of CRC) in AOM-induced CRC rats (Lala
et al, 2006). Accordingly, Shi et al. (2015) revealed reduced
tumor inddence and multiplicity (number of tumors per
mouse) in AOM/DSS-promoted colorectal carcnogenesis in
mice after 20-week supplementation with anthocyanin-rich
stawberries. Cooke et al (2006) reported less intestinal
adenomas in adenomatous polyposis coli (Apc)/*™™ mice after
12-week treatment with either 0.3% of a commerdal ARE from
bilberry or the isolated anthocyanin type, cyanidin-3-glucoside.
The number of intestinal tumors in Apc™™” mice was also
decreased upon 7-week treatment with 0.5% of ARE from black
soybean (Park et al, 2015). Likewise, ApLM" mice consuming
either a supplemented diet with anthocyanin-rich tart cherry,
ARE from tart cherry in drnking water, or cyanidin for
10 weeks exhibited less and smaller cecal adenomas in compari-
son to mice under control diet or sulindac (Kang et al., 2003),
a non-steroidal anti-inflammatory drug, known to inhibit tumor
progression (Boolbol et al, 1996). Positively, Ap:f“"" mice fed
with different dosages of ARE from tart cherry in combination
with sulindac reduced total tumor area per mouse and tumor
number when compared to sulindac alone (Bobe et al., 2006).

The anticarcinogenic effect of A/A has also been evaluated
in vitro. Cyanidin and ARE from tart cherry were able to induce
a dose-dependent decrement of cell proliferation in both HCT-
116 and HT-29 cells with no cytotoxic effects (Kang et al,
2003). Interestingly, cyanidin was even more potent in inhibit-
ing cell growth in comparison with ARE from tart cherry. The
IC50 for cyanidin, i.e. the concentration of cyanidin inducing a
50% reduction in cell proliferation, was much lower than that
for anthocyanins (Kang et al., 2003). Anthocyanidins inhibited
the proliferation in stomach, colon, lung, breast and central
nervous system cancer cell lines, while anthocyanins at the
same concentration could not inhibit above cell growth (Zhang,
Vareed, and Nair, 2005).

Similarly, ARE from Chinese blueberry suppressed the pro-
liferation of colon carcinoma cell lines, DLD-1 and COLO-205
cells (Zu et al., 2010). The IC50 and IC90 values of Chinese
blueberry were much lower in relation to ARE from bilberry. It
is worth commenting that, albeit both AREs consist mainly of
the aglycone delphinidin, ARE from Chinese blueberry presents
higher malvidin concentration and lower cyanidin percentage
than ARE from bilberry (Zu et al,, 2010). Thus, not only cyani-
din but also other anthocyanidin types might also strongly con-
tribute to the antiproliferative properties and pro-apoptotic
activities of A/A.
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Anthocyanin-rich extract from different sources may pres-
ent distinct glycosylations, leading to different anticarcinogenic
activities (Koide et al., 1997). Besides, the anthocyanin structure
also influences its uptake and, therefore, affects its bioavailabil-
ity (Kuntz et al, 2015). In this regard, Zhao et al. (2004) have
investigated whether different anthocyanin profiles with
expected distinct glycosylation would trigger similar or differ-
ent responses on HT-29 cell proliferation. They found that the
proliferation of HT-29 cells treated with ARE from grape,
containing five different anthocyanins and their acylated coun-
terparts, was similarly inhibited (Zhao et al,, 2004) when com-
pared to treatment with ARE from bilberry, composed of
non-acylated anthocyanins. However, ARE from chokeberry
containing mainly monoglycosylated cyanidin derivatives
showed greater inhibition compared to ARE from bilberry and
grape (Zhao et al, 2004). Thus, different glycosylations
attached to the anthocyanin structure will, indeed, influence its
efficacy. Likewise, Jing et al. (2008) evaluated the growth inhibi-
tory effects of ARE from different sources and found that ARE
from purple corn, mainly consisting of cyanidin-3-gluccside,
induced the most potent growth inhibitory activity in HT-29
cell line, followed by chokeberry and bilberry. ARE from grape,
however, was able to cause moderate growth inhibition.

The growth inhibitory effects of ARE are not only dependent
on the source and glycosylation pattern of anthocyanins, but
also on the storage time and maturity stage (Lewis, Walker,
and Lancaster, 1999; Blessington et al., 2010). At low storage
temperature (4 °C), starch is converted to sugars (Isherwood,
1976). In this situation, sugars function as signaling molecules
and induce the upregulation of several genes involved in the
anthocyanins biosynthesis pathway (Solfanelli et al, 2006),
thus increasing anthocyanin contents. Anthocyanins contribute
to the main portion of polyphenols in purple-fleshed potatoes
(Charepalli et al., 2015). The anthocyanin concentration is
increased in purple potatoes stored up to 60 days at 3 °C
(Madiwale et al,, 2011). However extract from purple potatoes
at 90 days of cold storage presented lower anthocyanin con-
tents. Such decrement might be one of the reasons that the anti-
proliferative effects of such extracts decreased after 3 months of
storage (Madiwale et al., 2011).

Black raspberries from distinct harvest locations, cultivars or
maturity stages present different anthocyanin content, and, in
consequence, the antiproliferative efficacy of black raspberry
extracts on HT-29 cells is also influenced by their cultivars, pro-
duction locations and maturation in a complex manner (John-
son etal, 2011).

4. Mechanisms responsible for anti-CRC effects
of anthocyanins/anthocyanidins

Anthocyanins/anthocyanidins demonstrate strong preventive
effects on intestinal tumor formation and development in
preclinical animal models (Park et al, 2015; Shi et al., 2015).
However, what might be the mechanisms by which A/A exert
their protective properties against CRC? Accumulating studies
have demonstrated the role of A/A in stimulating the expres-
sion of tumor suppressor genes and downregulating pro-onco-
genic signals as well as controlling proliferation and apoptosis
pathways (Forester et al., 2014; Charepalli et al,, 2015).
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4.1. Anthocyanins/anthocyanidins downregulate
pro-inflammation and oxidation pathways

Inflammation is a crucial protective response of the host
defense against pathogens, harmful stimuli or damaged tissue.
However, excessive chronic inflammation, as observed in IBD,
has been markedly involved in different stages of tumor growth
and colitis-associated CRC (Takeuchi and Akira, 2010). During
carcinogenesis, the inflammatory microenvironment represses
the host anti-tumor response, and thus, cancer-promoting
immune activity stimulates tumor growth, angiogenesis, and
metastasis (Grivennikov et al., 2009).

Overproduction of pro-inflammatory cytokines such as IL-1,
IL-6, IL-8 and TNF-« in colitis-associated CRC can trigger sig-
naling cascades that constitutively upregulate key inflammatory
signaling, such as nudear factor kappa-light-chain-enhancer of
activated B cells (NF-«B) and signal transducer and activator of
transcription 3 (STAT3) (Szosarek, Chares, and Balkwill, 2006;
Fan, Mao, and Yang, 2013). The cross-talk between inflamma-
tory signaling and Wnt/f-catenin pathway leads to S-catenin
translocation towards the nucleus (Pramanik et al., 2015), which
stimulates the downstream transcription of cardnogenic growth
factors, cyclin D1 and c-Myc (Mishra et al,, 2013; (levers and
Batlle, 2006), and therefore results in stem cell proliferation
while blocking differentiation. Both intestinal epithelial cells and
crypt stem cells fail to carry out appropriate cell division. Thus,
besides inflammation and dysplasia, this process leads to ACF,
and even carcinoma transition depending on the severity and
duration of ulcerative colitis (Terzic et al., 2010).

Inflammatory cells release high amounts of reactive oxygen
species (ROS) and reactive nitrogen spedes (RNS), which are
the well-known triggering substances of DNA damage and
mutations (Meira et al., 2008), thereby worsening the disease
prognosis and inhibiting earlier remission. Based on the chemi-
cal structure, A/A have strong ability for electron donation,
which explains its unique antioxidant properties (Ali et al.,
2016). The intracellular ROS activity was decreased in Caco-2
cells treated with cyanidin chloride or cyanidin-3-O-§ gluco-
pyranoside (Renis et al,, 2008). Coherently, ARE from red wine
inhibited indudble nitric oxide synthase (iNOS) in a dose-
dependent manner in HT-29 cells, accompanied with reduced
levels of both nitric oxide radical and protein tyrosine nitration,
a biomarker of nitrosative stress (Nunes et al., 2013).

Apoptosis-dependent tumor surveillince mechanisms are
altered in HT-116 cells under treatment with delphinidin due to
inhibition of the inflammatory NF-«B pathway (Yun et al,, 2009).
Besides inhibiting the phosphorylation and degradation of IxBa,
delphinidin was able to suppress activation of I kappa B kinase o
(IKKa), important to trigger IxBar activation in a dose-dependent
way (Verma et al,, 2012). As a result, phosphorylation of NF-xB/
p65 was also inhibited by delphinidin, hence reduding the nuclear
translocation of NF-xB/p65. This cascade of events subsequently
led to lower transcriptional activation of inflammatory cytokines
and thus, induction of apoptosis and cell cyde arrest.

4.2. Anthocyanins/anthocyanidins induce apoptosis

Anthocyanins/anthocyanidins consumption has reduced intes-
tinal tumor incidence and/or multiplicity in animal studies
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Cyanidin OH H
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Figure 1. Chemical structure of the flavylium cation (left). The main anthocyani-
dins are formed according to the spedific substitutes at R1 and R2 positions (right).
Anthocyanins, in tum, mostly present tri-, di or mono-saccharide unit incorporated
into the anthocyanidin structure.

(Park et al., 2015; Silva et al., 2015). One of the mechanisms for
such improvement is the fact that A/A act as antiproliferative
agents in vivo through upregulating malignant cell apoptosis
mechanisms (Seeram et al., 2006).

4.2.1. Apoptosis introduction

Apoptosis is a highly complex event of programmed cell death
characterized by morphologic changes, such as chromatin con-
densation and subsequent nuclear and DNA fragmentation
(Kroemer et al.,, 2009). Two major apoptosis pathways are
dosely regulated to induce cell destruction: the extrinsic recep-
tor-mediated pathway, represented by the activation of death
domains and death effector domains on the cell surface; the
intrinsic cytotoxic mitochondrial-mediated apoptosis, in which
mitochondrial membrane permeabilization will lead to cysteine
aspartyl-specific protease (caspase) activation (Parrish et al.,
2013). Although both pathways will trigger effector caspases,
most stimuli induce apoptosis via mitochondrial outer mem-
brane permeabilization (Lopez and Tait, 2015). Cells are stimu-
lated to trigger cell death by apoptosis or necrosis when cells
fail to repair DNA damage (Pommier, 2013). Once DNA
lesions reach sufficient concentration, they activate cell cycle
checkpoints and concomitant apoptosis machinery (Yoshida
et al, 2008; Haince et al., 2007).

4.2.2. Cell death triggered by DNA damage
Given the potential devastating effects of gene instability, cells
have developed a tight control of the main pathways of survival
and death. Neverthelesss, DNA damage occurs during
transcription and replication. The mechanisms involved in
DNA repairment are known as DNA damage response. In this
context, topoisomerase I and II are key nuclear enzymes
involved in the cell cycle progression and responsible to cata-
lyze the phosphodiester backbone, thus allowing DNA unwind-
ing for replication (Lord and Ashworth, 2012).
Anthocyanin-rich extract from bilberry and grape has also
been described as topoisomerase inhibitors due to its ability to
reduce topoisomerase I and II activity (Esselen et al., 2011;
Habermeyer et al., 2005). However, it is noteworthy that A/A
present no properties as topoisomerase poisons, since such
compounds cannot stabilize the covalent DNA-topoisomerase
intermediates of topoisomerase I or II, known as cleavable
complex, which would also result in DNA lesions (Habermeyer
et al., 2005). Interestingly, cyanidin and delphinidin, but not
their isolated glycosides (cyanidin-3-glucoside and delphini-
din-3-rutinoside, respectively) are effective in diminishing the
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catalytic activity of topoisomerases (Esselen et al., 2011; Haber-
meyer et al, 2005). Compounds inhibiting topoisomerase
function stimulate the formation of DNA single or double-
strand breaks across the genome (Lord and Ashworth, 2012).
Indeed, delphinidin acts as a topoisomerase inhibitor and
therefore, allows the increase in DNA strand breaks (Fritz
et al, 2008). Thus, both DNA strand breaks and blocking
lesions of DNA replication have been identified as down-
stream-apoptosis triggering lesions (Naumann et al., 2009).

The phosphatidylinositol 3-kinase-related kinases such as
ATM (ataxia telangiectasia mutated) and ATR (ataxia telangi-
ectasia and Rad 3-related) are crucial “sensors” of DNA lesions.
Double-strand breaks and structural changes of the chromatin
stimulate ATM expression and its autophosphorylation,
whereas stalled DNA replication forks mainly activate ATR
(Caporali et al., 2004). Besides stimulating DNA strand breaks
and inhibiting the catalytic activity of topoisomerases, A/A,
such as cyanidin-3-O-§ glucopyranoside and its aglycone, can
upregulate the expression of ATM, which in turn stabilizes
tumor suppressor p53 (Renis et al., 2008). The chemotherapeu-
tic effects are observed by cell inhibitory proliferation, inducing
DNA fragmentation and hence, apoptosis.

4.2.3. Mitochondrial-mediated apoptosis

Programmed cell death can be concomitantly mediated by an
intrinsic activation of a cascade involving both caspase and B-
cell lymphoma 2 (Bd-2) family of proteins (Brentnall et al.,
2013). Increasing mitochondrial outer membrane permeabili-
zation is the way by which Bcl-2 family protein determines the
switch towards cell death rather than conferring survival func-
tionality (Gavathiotis et al., 2008). Once activated over the apo-
ptotic threshold by a diversity of cytotoxic stress stimuli, such
as DNA damage or growth factor deprivation, the initiator
BH3 (Bcl-2 homology 3) inhibits Bcl-2, the anti-apoptotic cell
guardian. In response, the pro-apoptotic effectors Bax (Bcl-2-
assodiated X protein) and Bak (Bd-2-killer) are then activated
and undergo translocation from the cytosol to the mitochon-
drial outer membrane, where they are oligomerized and, hence,
form pores (Czabotar et al,, 2013). The release of apoptogenic
factors, such as cytochrome C and second mitochondria-
derived activator of caspases (SMAC), will trigger the activation
of apoptotic protease-activating factor 1 (APAF1) and the inhi-
bition of X-linked inhibitor of apoptosis protein (XIAP),
respectively. This process will activate caspase-9 and, conse-
quently, the executioner caspase-3, -7 and -8 to carry out DNA
fragmentation and degradation of cytoskeletal and nuclear pro-
teins, thus favoring apoptosis (Li et al., 1997).

Although it remains unclear how exactly chromatin degra-
dation takes place during apoptosis, it has been demonstrated
that both caspase-activated deoxyribonuclease (CAD; also
known as DNA fragmentation factor) and poly ADP-ribose
polymerase (PARP)-regulated DNASIL3, an endonudease
found in the endoplasmic reticulum, are key enzymes in this
process (Errami et al,, 2013). Once activated by the executioner
caspases, spedally caspase-3, CAD and DNASI1L3 contribute to
internucleosomal DNA fragmentation. DNA fragmentation,
known as “DNA ladder”, is a key characteristic of apoptosis
(Kello et al., 2016; Gorczyca, Gong, and Darzynkiewicz, 1993).
Anthocyanin-rich extract from different blueberry cultivars,



containing mostly malvidin and peonidin glycosides, induces
apoptosis in HT-29 cells as a result of increased caspase-3 activ-
ity and DNA fragmentation (Srivastava et al., 2007). In accor-
dance, ARE from purple-shoot tea also mediates apoptosis in
different colon cancer cell lines by activation of caspase-3 and
its substrate PARP (Hsu et al., 2012).

Anthocyanins/anthocyanidins might also have an impor-
tant role in modulating pro-apoptotic and anti-apoptotic
proteins, since the expression of Bax mRNA is enhanced in
HT-29 cells treated with ARE from bilberry (Wu et al., 2007).
Although changes in Bcl-2 mRNA expression remain unde-
tectable after treating cells with ARE from bilberry (Wuet al.,
2007), delphinidin reduces the expression of Bcl-2 in HCT-
116 cells in a dose-dependent manner with a concomitant
augmentation of Bax expression, activation of caspase-9, -3
and -8, as well as the cleavage of PARP (Yun et al,, 2009). In
colon cancer stem cells, ARE from purple-fleshed potatoes
and java plum suppresses proliferation (Charepalli et al,
2015; Charepalli et al., 2016) by activating mitochondrial-
mediated apoptotic pathways through elevating Bax and
cytochrome C expression in a p53-independent way (Chare-
palli et al,, 2015). In addition, activity of caspase-3 and -7,
which leads to DN A fragmentation, was also increased (Char-
epalli etal, 2016).

The mitogen activated protein kinase (MAPK) signaling
pathways, mainly JNK/p38/ERK pathways, play a critical role
in triggering apoptosis (Sui et al., 2014). Long term activation
of ERK1/2 induces mitochondrial membrane disruption, lead-
ing to cytochrome C release and thus, the activation of caspase-
family proteins (Zhang et al., 2004; Cagnol et al., 2006; Tentner
et al,, 2012). Anthocyanin-rich extract from meoru fruit inhib-
its cell growth and induces apoptotic cell death by activating
phosphorylation of p38-MAPK and ERK1/2 with concomitant
suppression of anti-apoptotic Akt and XIAP (Shin et al,, 2009).
Besides downregulating Akt, ARE from meoru fruit inhibits the
pro-tumorigenesis mTOR pathway through AMPKa1 activa-
tion, suggesting the anticancer effects (Lee et al.,, 2010).

4.3. Anthocyanins/anthocyanidins suppress cancer cell
proliferation by inducing cell cycle arrest

Anthocyanins/anthocyanidins can also control malignant cell
proliferation through cell cycle arrest (Lazze et al,, 2004; Renis
et al,, 2008). Cell cyde is mainly highlighted by DNA replica-
tion (S phase) and chromosome segregation, resulting in the
formation of two new daughter cells (M phase). Such key
events are spaced by periods of cell preparation (G1 phase) and
chromatin reorganization (G2 phase) (Salazar-Roa and
Malumbres, 2017). Consistently, cells commonly follow a well-
controlled cell cycle, regulated by the presence and activity of
different cydin-dependent kinases and their associated cydins
(Murray, 2004) or tumor suppressor proteins (Cordon-Cardo,
2004).

4.3.1. Cell cycle blockage by cyclin-dependent kinases

Besides DNA fragmentation and activation of pro-apoptotic
pathways, ARE from different berries is able to induce overex-
pression of p21"*F! and p27, two cyclin-dependent kinase
inhibitors, known to restrain cell proliferation through
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induction of cell cyde blockage (Wu et al, 2007; Hsu et al.,
2012). Anthocyanin-rich extract from chokeberry showed anti-
proliferative effects in HT-29 cells through dual cell cycle arrest
at G0/G1 and G2/M phases, due to overexpression of p21"VA¥!
and p27°"! and downregulation of cyclins A and B (Malik
et al., 2003). Such outcomes might be attributed to a spedific
anthocyanin, since almost 70% of the total anthocyanins pre-
sented in the chokeberry extract are cyanidin-3-galactoside.
Consistently, pure delphinidin blocked cell cycleat G2/M phase
in HT-116 cells (Yun et al, 2009). The cellular mechanism
responsible to inhibit COLO 320DM cell proliferation by ARE
from purple-shoot tea was mainly through cell cyde blockage
(Hsu et al,, 2012). Notably, cells are blocked at the G1 phase
and concomitantly decreased in S phase. In addition, cyclins
D1 and E expression were downregulated in a dose-dependent
manner (Hsu et al., 2012). In colon cancer stem cells, which
have been reported to possess an important role in forming
and sustaining tumor expansion (Barker et al., 2009), ARE
from purple-fleshed potato reduces cell proliferation by down-
regulating f-catenin levels, which in turn decreases the levels of
its downstream proteins, cyclin D1 and c¢-Myc (Charepalli
et al,, 2015), both involved in cell cycle progression (Santoni-
Rugiu et al., 2000).

As previously discussed, different A/A behave distinctively
on cell proliferative control. Hypothetically, their effects on cell
cycle progression or arrest pathways might also differ. Likewise,
Caco-2 cell growth was more suppressed by cyanidin chloride
when compared with cyanidin-3-O-f glucopyranoside (Renis
et al,, 2008). Furthermore, they were able to induce DNA frag-
mentation, but only cyanidin chloride treatment induced a
decrease in ROS production. The ATM/p53 pathway, known to
disturb cell cyde and prevent cell proliferation through the acti-
vation of p21, was only upregulated by cyanidin chloride treat-
ment, which suggests that these anthocyanins might have
different effects on cell cycle blockage.

4.3.2. Tumor suppressor proteins as cell cycle
arrest inductors
It is important to highlight that tumor suppressor proteins,
such as p53 and retinoblastoma protein (pRB), have critical
roles in blocking abnormal cell proliferation; their mutations
may lead to uncontrolled cell division (Cordon-Cardo, 2004).
Most sporadic CRC development is owing to mutations in the
Apc tumor suppressor gene (Fearon, 2011), which mediates
B-catenin degradation (Kaler et al., 2009), thus contributing to
adenoma-carcinoma sequence (Tarmin et al., 1995).
Anthocyanin-rich extract from illawarra plum was effective
in reducing HT-29 cell proliferation associated with cell cycle
blockage at the S phase and induction of p53-independent apo-
ptosis and necrosis (Symonds, Konczak, and Fenech, 2013).
Additionally, ARE treatment resulted in telomere shortening
and decreased expression of telomerase reverse transcriptase,
indicating ARE functions as a telomerase inhibitor. Telomerase
inhibition followed by reduction in telomere length is an early
event in the apoptosis pathway that will lead to restrained cell
proliferation, disrupted cell cyde and subsequent apoptosis cell
death (Boklan et al., 2002). Moreover, most HT-29 cells treated
with ARE from illawarra plum exhibited high numbers of
cytoplasmic vacuoles, suggesting cell autophagy (Symonds,
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Konczak, and Fenech, 2013). Interestingly, the expression of
sirtuin 1 (SIRT1), which has been demonstrated to trigger auto-
phagy (Lee et al, 2008) and inhibit S-catenin pathway (Fire-
stein et al, 2008), was also increased with illawarra plum
extract treatment (Symonds, Konczak, and Fenech, 2013).

4.4. Anthocyanins/anthocyanidins inhibit CRC metastasis
through suppressing matrix metalloproteinases

The extracellular matrix is composed of proteins and proteo-
glycans, which are responsible for keeping cell attachment, thus
providing structural integrity to tissues (Cox and Erler, 2011).
The human matrix metalloproteinases (MMPs) are a group of
zinc-dependent endopeptidases ascribed to be involved in
inflammatory tissue destruction and capable of degrading base-
ment membrane collagen (Vandenbroucke and Libert, 2014).
Accumulating evidence suggests their role in the pathogenesis
of IBD (Matusiewicz et al,, 2014; Nighot et al, 2015) and hence,
in cancer development (Egeblad and Werb, 2002). A tumor cell
can metastasize to other organs if the components of the extra-
cellular matrix are degraded by MMPs. Therefore, MMP sup-
pression might be one of the promising targets for cancer
therapy (Gialeli et al., 2011). In this context, A/A exhibit anti-

invasive activities by suppressing the expression of MMP-2 and
MMP-9 in a dose-dependent manner (Shin et al, 2011; Yun
et al, 2010).

Albeit MMPs are notably related to invasion and metastasis,
and late events in cancer progression, studies have also empha-
sized its functions in immunity, such as the intertwine between
MMPs and inflammation. Matrix metalloproteinases can
directly or indirectly mediate the expression of several inflam-
mation-related cytokines or pathways (Nelissen et al, 2003).
For instance, the pro-inflammatory IL-18 precursor needs to
be deaved to become active (Yazdi and Ghoreschi, 2016).
MMP-2, -3 and -9 can break down and activate the IL-
18 precursor (Schonbeck, Mach, and Libby, 1998). Further-
more, MMPs (MMP-3, -7, -9, -12, -17) can turn latent TNF-«
into bioavailable TNF-a (Haro et al., 2000; Churg et al,, 2003),
which results in the activation of pro-tumorigenesis NF-xB
pathway (Ferrari et al,, 2016). Anthocyanins/anthocyanidins
can also contribute to a dual beneficial effect on tumor cell
growth: reducing the expression of various pro-metastasis
MMPs and additionally suppressing pro-inflammatory mecha-
nisms via MM Ps downregulation (Chen et al., 2006).

There is a positive relationship between MMPs and the
Akt/mTOR signaling pathway, which has been reported

Colon cancer cell

Figure 2. The possible anticarcinogenic mechanisms of anthocyanins/anthocyanidins in colon cancer cells. Anthocyanins/anthocyaniding (A/A) inhibit the pro-inflamma-
tory NF-x B signaling pathway and §-catenin translocation to stimulate cell cyde blockage. A/A act as topoisomerase inhibitors and stimulate DNA strand break responses.
Furthermore, A/A phosphorylate ATM to trigger DNA fragmentation and cell cyde blockage. A/A disrupt mitochondrial brane to induce apoptosis. Concomitantly, A/
A enhance tight junction formation, suppress metastasis in ess, and increase cell autophagy. Akt, protein kinase B; AMPK, AMP-activated protein kinase; APAF1,
apoptotic protease-activating factor 1; ATM, ataxia telangiectasia d; Bd-2, B-cell lymph 2; Bd-d, Bcell lymphoma-extra large; BH3, Bck-2 homology 3; CAD, cas-
pase-activated deoxyribonudease; ERK, extracellular signal-regulated kin mitogen activated protein kinase; MMPs, metaloproteinases mTOR, mammalian
target of rapamycin; NF-«B, nudear factor kappa-light-chain-enhancer of activated B cells SIRT1, sirtuin 1; SMAC, second mitochondria-derived activator of caspases;
XIAP, Xinked inhibitor of apoptosis protein. The green arrows indicate demonstrated effects The black dashed arows indicate the potential effects. The red lines indicate
negative effect. The black arrows indicate the translocation.
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elsewhere in CRC cells (Li et al, 2016; Zhang et al., 2015). In
addition, an invasive growth of CRC cells is observed when
enhanced expression of MMPs takes place due to deactivation
of AMPK (Banskota et al., 2015) and posterior activation of
Akt/mTOR (Zhan et al,, 2017). Although the role of mTOR
and its downstream effectors on metastasis invasiveness activa-
tion remains speculative (Zhan et al, 2017), inhibition of
MMPs, activation of AMPK and inhibition of Akt/mTOR
might reduce the invasive phenotype in CRC cells. Anthocya-
nin-rich extract from meoru suppresses Akt/mTOR phosphor-
ylation, in addition to triggering apoptosis, by stimulating
AMPKa1 activation (Lee et al, 2010), further suggesting the
potential role on metastasis prevention.

The suppressing properties of A/A on cell growth and inva-
siveness have also been assodated with modulation of tight
junction proteins, induding daudin-1, -3 and -4 (Shin et al,
2011). Such daudins are crucial transmembrane proteins found
to be overexpressed in CRC (Mees et al., 2009). Besides sup-
pressing claudin-1, -3 and -4 in HCT-116 cells, ARE from
meoru enhanced tight junctions (cell-cell adhesion), as indi-
cated by increased transepithelial electrical resistance in a con-
centration-dependent manner (Shin et al., 2011), thus reducing
cell invasion. Moreover, restoration of functional tight junction
proteins has recently been reported to be related to apico-basal
polarity proteins (Borovski et al, 2016). Future studies should
also address the role of A/A on cell invasion by modulating
tight junction-associated protein complexes, i.e. the crumb
(CRB) complex, the partitioning defective (Par) complex, and
the scribble (Scrib) complex.

5. Conclusions

As the second most lethal cancer in the United States, the need
of new preventive approaches for CRC has become increasingly
crucial. In this sense, bioactive compounds would be an easy
dietary strategy to provide a therapeutic and nutritional alter-
native for CRC. Spedially, growing evidence shows that A/A
have benefidal effects on the management of CRC develop-
ment. This review summarizes current literatures on anti-CRC
health-promoting effects of A/A and their underlying mecha-
nisms (Figure 2). Mainly, A/A mediate colorectal carcinogene-
sis via stimulation of apoptosis pathways, cell cycle arrest,
inhibition of metastasis, and suppression of cell proliferation,
as a result of downregulation of inflammatory and oxidative
mechanisms. Most in vitro and in vivo studies, in fact, indicate
the chemopreventive properties of A/A. However, due to the
lack of human studies assessing the beneficial effects of antho-
cyanin-rich food/extracts on CRC, the results are still unclear
at clinical level. In addition, more studies are needed on the
interaction between A/A and the gut microbiota, in order to
assess how the gut microbiota-derived anthocyanin metabolites
influence the bioavailability of A/A, carcinogenesis, and growth
of cancer cells, as well as the onset and development of CRC in
animal models and human studies.
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Abstract: Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its
high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health
beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility
of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old
C57BL/ 6] female mice were fed a 45% HFD or HFD supplemented with 10% GP. A fter 7-week dietary
supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed
by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in
HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression
of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6,
cyclooxygenase-2 (COX-2), IL-17, interferon-y (IFN-vy), and inducible nitric oxide synthase (iNOS)
in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression
of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Kriippel-like factor 4 (K1f4),
and SAM pointed domain ETS factor 1 (Spdefl) in HFD-fed mice. In addition, GP ameliorated
endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription
factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78),
the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing
o-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice.
In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice,
which was associated with the suppression of inflammation, mucin depletion, and ER stress in
the colon.

Keywords: high-fat diet; colitis; green pea; inflammation; mucin 2; endoplasmic reticulum stress

1. Introduction

According to the latest NHANES survey (2009-2010), 31.9% of non-pregnant women 20-39 years
of age are obese, and another one-third are overweight [1]. In parallel with the increased obesity
prevalence, the incidence of inflammatory bowel disease (IBD), consisting of Crohn’s disease (CD) and
ulcerative colitis (UC), is on the rise. IBD is a chronic relapsing disorder of the gut with a complicated
etiology. Increasing evidence indicates that Western dietary and life-style habits contribute to the
increased prevalence of IBD by inducing intestinal inflammation [2].

The Western diet is high in fat and low in fiber, which aggravates dextran sodium sulfate
(DSS)-induced colitis [3], and is further exacerbated by the intake of red meat [4]. Long-term high
intake of trans-unsaturated fats is associated with an increased risk of UC in women in the USA [5].
Recently, we found that maternal HFD consumption during gestation and lactation predisposed
female offspring to a higher susceptibility to DSS-induced colitis through increased inflammatory
responses [6]. HFD consumption also induces oxidative and endoplasmic reticulum (ER) stress [7],
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leading to mucin 2 protein misfolding in cultured colon cells [7]. Mucin 2 depletion and misfolding
correlates with colitis in mice [8].

On the contrary to the HFD, high vegetable and fiber intake is associated with a decreased risk of
IBD [9]. Epidemiologically, legume intake was protective against colorectal cancer in a case control
study [10], and significantly reduced the risk of colorectal adenoma in a meta-analysis of three cohort
studies and eleven case control studies [11]. Legumes and pulses, including peas, are rich in fiber and
other phytonutrients that boost beneficial intestinal microbiota [12], producing short chain fatty acids
(SCFA) and promoting epithelial barrier integrity [13]. Further, dietary soybean Bowman-Birk inhibitor
concentrate [14], white and dark kidney beans [15], and cranberry bean supplements [16] suppressed
colonic inflammation and reduced the severity of DSS-induced colitis in mice. Consistently, pea seed
albumin extract ameliorated DSS-induced colitis in mice by reducing the expression of inflammatory
markers in colonic tissues [17]. These results suggest that beans in general might have protective
effects against colitis. The objective of the current study was to investigate the preventive effect of
dietary green pea (GP) supplementation on DSS-induced colitis in HFD-fed female mice and further
examine its underlying mechanism.

2. Materials and Methods

2.1. Green Pea (GP)

GP was purchased from Moscow Food Co-op (Moscow, ID, USA) and powdered in the cyclone
mill (Model 3010-060, UDY Corp., Fort Collins, CO, USA). The powdered GP was shipped to the
Research Diets, Inc. (New Brunswick, NJ, USA) for customized diet formulation.

2.2. Experimental Design and Animal Diets

Six-week-old C57BL/ 6] female mice (originally purchased from Jackson Laboratory, Bar Harbor,
ME, USA, and inbred in our facility) were randomly divided into two groups. One group of mice
(n =7) was fed with the HFD (45% energy from fat, D12451, Research Diets Inc., New Brunswick,
NJ, USA) (Table S1), and the other group of mice (n =7) was fed HFD supplemented with GP (10% of
dry feed weight) (HFDGFE, D15080605, Research Diets Inc., New Brunswick, NJ, USA) (Table S1) for a
total duration of 9 weeks. The dose of GP (10%) supplement was 100 g/ kg of the diet. The average
daily consumption by mice was 2.40 g/mouse. This equals to 240 mg GP per day for an adult
mouse of 20 g (i.e., 12 g GP/day/kg body mass), which converts to 58.38 g of GP daily consumption
for a 60 kg human per the published formula [18]. Colitis was induced using colitis grade DSS
(Molecular Weight = 36,000-50,000) (MP Biomedicals, Santa Ana, CA, USA) after 7 weeks of dietary
supplementation. Both groups were given 2.5% DSS (w/ v) in drinking water for 7 days followed by a
7-day recovery period providing normal drinking water (Figure S1). We used only virgin females in
the study to avoid a confounding sex effect and to minimize potential differences in female hormone
cycling. Mice were monitored daily throughout the DSS treatment and recovery period for disease
symptoms. All mice were housed in a temperature-controlled room with a 12 h lightand 12 h dark cycle
and had free access to diet and drinking water. No differences were observed in the average amount
of water and feed consumption (Figure S2A) between treatment groups. All animal procedures were
approved (BAF # 04316-010) by the Washington State University Animal Care and Use Committee.

2.3. Assessment of Colitis Symptoms and Disease Adtivity Index

Mice were monitored daily for body weight loss compared to initial weight (scored as (-4),
fecal consistency (scored as 0-4), and blood in the stool (scored as 0-4) throughout the DSS treatment
and recovery period. The disease activity index (DAI) score was assessed as the combined score of the
above three criteria [19)].
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2.4. Colonic Tissue Collection and Processing

Mice were anesthetized with CO; inhalation and followed by cervical dislocation. The entire
colon was dissected, and a 5 mm segment of the distal colon at a constant location was fixed in freshly
prepared 4% (w/v) paraformaldehyde (pH 7.0), processed, and embedded in paraffin. The remaining
colonic tissue, containing both inflamed and non-inflamed areas, was rinsed in PBS, frozen in liquid
nitrogen, and stored at —80 °C for later biochemical analysis.

2.5. Neutrophil Assessment

Paraffin embedded tissues were cut into 5 um thick sections, deparaffinized, and hydrated,
followed by antigen retrieval, goat serum blocking, and overnight incubation with anti-Ly-6B.2
antibody (Bio-Rad Laboratories Inc.,, Hercules, CA, USA). After incubation with the secondary
antibody, signals were visualized using the Vectastain ABC and DAB peroxidase (HRP) substrate kits
(Vector Laboratories Inc., Burlingame, CA, USA) and haematoxylin counterstaining. Images were
taken using the Lecia DM2000 LED light microscope (Chicago, IL, USA). Neutrophil infiltration scores
were assessed blindly by two researchers using the criteria described previously [20]. Briefly, the scores
for depth of neutrophil infiltration (scored as 0-3) and staining intensity (scored as (—4), which was
the percent area positive as extent (0, none; 1, <25%; 2, 25-50%; 3, 50-75%; 4, >75%), were recorded
individually. The summation of both scores resulted in a total quantified score ranging from 0 to a
maximum of 7 per distal colonic section. Nine sections per animal at constant interval were used for
microscopic examination and score assessment.

2.6. Immunoblotting Analysis

Immunoblotting analyses were performed as previously described [21]. Band density
was quantified using the Odyssey Infrared Imaging System and Image Studio™ Lite software
(Li-Cor Biosciences, Lincoln, NE, USA), and normalized to the B-actin content Antibodies against
activating transcription factor-6 (ATF-6), mucin 2, and xanthine oxidase (XO) were from Santa Cruz
Biotechnology Inc. (Dallas, TX, USA). Cyclooxygenase-2 (COX-2) and interleukin (IL)-6 primary
antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA). Anti-B-actin antibody
was from Sigma (St. Louis, MO, USA). IRDye 680 goat anti-mouse and IRDye 800CW goat anti-rabbit
secondary antibodies were purchased from Li-Cor Biosciences (Lincoln, NE, USA).

2.7. gqRT-PCR Analysis

Total RNA was extracted from the powdered colonic tissue using Dynabeads® mRNA DIRECT™
Purification Kit (Invitrogen, Carlsbad, CA, USA) following the protocol of the manufacturer. cDNA was
synthesized with the iScript™ cDNA synthesis kit (Bio-Rad Laboratories Inc., Hercules, CA, USA).
gRT-PCR was performed on a Bio-Rad CFX384 real-time thermocycler [22]. The 185 was used as the
reference gene. Primer sequences are provided in Table S2.

2.8. Statistical Analysis

All data were analyzed as a complete randomized design using the General Linear Model of
Statistical Analysis System (2000), expressed as mean =+ standard error of mean (SEM). Student’s T-test
was used for calculating significance. A significant difference was considered as p < 0.05.

3. Results

3.1. GP Supplementation Counteracts Symptoms of DSS-Induced Colitis in HFD-Fed Mice

DSS-induction caused colitis symptoms in mice. The HFD-fed mice with and without GP
supplementation showed similar symptomatic parameters during the DSS-treatment phase (Figure 1).
However, during the recovery phase, the GP-supplemented HFD-fed group recovered faster than
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mice without GP supplementation. The body weight loss and body weight loss score remained
lower in the GP-supplemented HFD-fed group throughout the recovery period (Figure 1A,B). Further,
a significant reduction in the fecal blood and DAI score was found in GP-supplemented HFD-fed mice
(Figure 1C,D). There was no difference in body weight between the two groups before DSS-induction
(Figure S2B).
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Figure 1. Symptoms of dextran sulfate sodium (DSS)-induced colitis in high-fat diet (HFD) (0) or HFD
supplemented with green pea (HFDGP) (W) fed mice. (A) Body weight loss; (B) Body weight loss score;
(C) Fecal blood score; (D) Disease activity index score during DSS treatment and recovery process;
a higher score correlates with severer symptoms. Means + SEM, n=7, *p < 0.05,**p < 0.01.

3.2. GP Supplementation Reduces Neutrophil Recruitment and Monocyte Chemoattractant Protein-1 (MCP-1)
Expression in HFD-Fed DSS-Colitis Mice

GP supplementation reduced the neutrophil recruitment, and resultant tissue damage in the
colonic tissues of HFD-fed DSS-colitis mice (Figure 2A,B). In accordance, GP supplementation reduced
the gene expression of MCP-1 (Figure 2C), which enhances the recruitment of neutrophils into the
mesenteric tissues [23].

3.3. GP Supplementation Reduces Inflammation and Oxidative Stress in HFD-Fed DSS-Colitis Mice

In agreement with improved epithelial damage, GP supplementation reduced the protein and
mRNA expression of both interleukin (IL)-6, and cyclooxygenase-2 (COX-2) (Figure 3A,B), and reduced
the mRNA levels of IL-17, interferon (IFN-y), and inducible nitric oxide synthase (iNOS) (Figure 3C) in
the HFD-fed DSS-colitis mice. Altogether, these data confirmed the beneficial effect of GP via reducing
inflammation and oxidative stress in DSS-colitis.
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Figure 2. Immunohistochemical staining of neutrophils in distal colonic tissues of high-fat diet (HFD)
(0) or high-fat diet supplemented with green pea (HFDGP) (M) fed DSS-colitis mice. (A) Representative
images of neutrophil staining; (B) Neutrophil quantified score; (C) mRNA expression of MCP-1;
(D) Representative immunoblotting bands and statistical data of xanthine oxidase (XO). Means + SEM,
n=7%p<005*p<00L

A B c
12 o wo 1 1.
§ - - Wroor i : i
MFD KFDGP NFD WDGP H g‘ ; 1
ERT!
e . * o CRY . *
9
COXZ | M e —— 2% % 0 2 % o
b d
pactn £ io 3l .
= 2° E
0o
L6 coxz Ls cox.2 AT FNy INOS

Figure 3. Inflammatory mediators in the colon of HFD or HFDGP fed DSS-colitis mice.
(A) Representative immunoblotting bands and statistical data of IL-6 and COX-2; (B) mRNA expression
of IL-6 and COX-2; (C) mRNA expression of IL-17, IFN-y and iNOS. Means = SEM, n=7, *p < 0.05,
-

p < 0.0L

3.4. GP Supplementation Enhances MUC-2 Secretion and Goblet Cell Differentiation in HF D-Fed
DSS-Cadlitis Mice

Mucin 2 is the major mucin produced by goblet cells and provides an additional protective
layer to the gut epithelium. Both the mRNA and protein levels of mucin 2 were enhanced in the
GP-supplemented HFD-fed DSS-treated mice (Figure 4A,B). In agreement, the gene expression of
goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krippel-like factor 4 (K1f4), and SAM
pointed domain ETS factor 1 (Spdefl) were higher in the GP-supplemented HFD-fed DSS-induced
mice (Figure 4C).
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Figure 4. Mucin-2 and goblet cell differentiation markers in the colon of HFD or HFDGP fed DSS-colitis
mice. (A) mRNA expression of MUC-2; (B) representative immunoblotting bands and statistical
data of mucin 2; (C) mRNA expression of goblet cell differentiation markers, Tff3, KIf4, and Spdefl.
Means £ SEM,n=7,*p < 0.05, **p < 0.01.
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3.5. GP Supplementation Suppresses the Expression of Activating Transcription Factor-6 (ATF-6) and
ER-Stress Markers in HFD-Fed DSS-Colitis Mice

IBD is associated with ER stress and mucin 2 misfolding [24,25]. As part of the unfolded
protein response (UPR), ATF-6 triggers the transcription of genes encoding the chaperone protein
glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein
(CHOP), the ER degradation-enhancing c-mannosidase-like 1 protein (Edem1), and the X-box binding
protein 1 (Xbp1) [26,27]. Consistently, GP supplementation reduced the protein expression of ATF-6
(Figure 5A) and mRNA expression of its downstream target genes Grp78, CHOP (Figure 5B), Edeml,
and Xbp1 in the HFD-fed DSS—colitis mice (Figure 5C), showing the suppression of ER stress.
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Figure 5. Endoplasmic reticulum (ER)-stress signaling in the colon of HFD or HFDGP fed DSS-colitis
mice. (A) ATF-6 protein content; (B) mRNA expression of Grp78 and CHOP; (C) mRNA expression of
Edem1 and Xbpl. Means = SEM, n=7,*p < 0.05, **p < 0.01.

4. Discussion

Obesity is the root cause of many chronic diseases including diabetes, hypertension,
and cardiovascular disease. Consumption of the HFD is associated with intestinal inflammation and
increased permeability to the microbial end-products in mice [2,28]. The HFD enhances the severity
of colitis in experimental colitis mice models [7,29,30], and promotes colon cancer initiation [31].
Further, inclusion of red meat in the Westernized HFD aggravated DSS-colitis in mice [4]. Peas are a
valuable source of plant proteins, fiber, and polyphenolics [32], and its extract reduced inflammation
in mice with DSS-induced colitis [17]. Our study shows that supplementation of GP accelerated the
recovery from colitis symptoms in the HFD-fed mice as evident from decreased body weight loss and
a lower fecal blood score during the recovery stage. In support of our findings, supplementation of
dietary white and dark kidney beans as well as cranberry beans reduced colitis severity by reducing
body weight loss, fecal blood score, and resultant DAI score in DSS-induced colitis mice [15,16].
Similarly, dietary supplementation of soybeans Bowman-Birk inhibitor concentrate reduced the
severity of DSS-colitis by suppressing inflammation in the colon and improving the recovery following
DSS-induction [14].
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DSS causes mucosal and tissue damage in the mouse gut similar to the patterns of inflammatory
responses observed in human UC [33,34]. The activation and infiltration of inflammatory cells,
including neutrophils and monocytes, is one of the common features in colitis, which is a complex
process driven by cytokines, chemokines, and cell adhesion molecules [35]. Cytokines mediate
neutrophil infiltration into the intestinal wall and MCP-1, highly expressed in colonic mucosa in
IBD [36], enhances the migration of neutrophils during chronic inflammation [23]. In DSS-induced
colitis, Westernized HFD-feeding enhanced neutrophil infiltration as indicated by enhanced
myeloperoxidase activity [4], and pea seed albumin extracts reduced inflammatory cell infiltration
into the colon [17]. In agreement, the current study found that DSS-induction enhanced both the
neutrophil infiltration and MCP-1 expression in the colon of HFD-fed mice, which were mitigated
by GP supplementation. Inline, dietary white and dark kidney beans, as well as cranberry bean
supplements, reduced the mRNA expression of MCP-1 in the colon of DSS-colitis mice [15,16].

Infiltrated neutrophils produce proinflammatory cytokines including IL-6, IL-17, and IFN-y,
and enhance the expression of oxidative stress enzyme, iNOS, further aggravating colitis [28,33].
IFN-vy plays an important role in the development of DSS—colitis, likely by activating and directing the
leucocytes to the intestinal tissue [37]. Similarly, IL-17 stimulates epithelial cells to secrete IL-6 and
helps CD34+ hematopoietic progenitors mature into neutrophils [38]. In the current study, elevated
levels of IL-6, IL-17, IFN-y, iNOS, and COX-2 caused by DSS-induction were ameliorated by GP
supplementation in the colon of HFD-fed mice. Consistently, dietary white and dark kidney beans
reduced the mRNA expression of IL-6 [15], and cranberry bean supplementation reduced the IL-6
protein in the colon along with reduced serum IL-6, IL-17, and IFN-y in DSS-induced colitis [16].
The down-regulation of inflammatory cascades and oxidative stress by GP supplementation can be
partially explained by the low neutrophil infiltration into the colon of HFD-fed DSS-colitis mice.

The lubricating layer of mucus that shields the epithelium from the gut luminal content
predominantly consists of mucin 2 produced by goblet cells. Mucin 2 goes through heavy extensive
translational modifications in the ER and Golgi complex, making it susceptible to misfolding, and thus
activating the UPR signaling [39]. Disturbance in the UPR and ER stress in intestinal epithelial cells
induces chronic inflammation in IBD [24,25]. Missense mutations of the MUC-2 gene in Winnie and
Eeyore mice increased ER-stress-related mucin depletion, resulting in colitis [8]. Recently, Gulhane and
colleagues found that the HFD induced the expression of oxidative stress marker iNOS, and ER-stress
markers including UPR signaling molecules Xbp1, ER chaperone Grp78, and ERAD chaperone Edem1
in the colon of Winnie mice [7]. On the other hand, dietary chickpea supplementation increased
colon mucus content, mRNA expression of MUC-2, and differentiation marker Klf4 with enhanced
gut barrier integrity and reduced inflammation in healthy unchallenged mice [13]. In DSS-induced
colitis, dietary white and dark kidney beans, as well as dietary cranberry bean supplementation,
enhanced the mRNA expression of MUC-2 and Tff3, and mitigated the severity of colitis and associated
inflammation [15,16]. Consistent with these observations as well as improved colitis symptoms,
GP supplementation improved both protein and gene expression of MUC-2 in HFD-fed DSS-induced
mice, associated with the enhanced expression of goblet cell differentiation markers in the colon.
Further, ATF-6 and its downstream ER-stress markers Grp78, CHOP, Edem1, and Xbp1 [24,25] were
reduced in HFD-fed mice by GP supplementation.

Legumes such as chickpeas, kidney beans, and cranberry beans contain dietary fiber, resistant
starches, protein, and polyphenolics with reported beneficial effect on intestinal health [13,15,16].
The protein extract of soybeans and peas contains the active Bowman-Birk inhibitor that possesses
anti-inflammatory activity and can reduce the severity of DSS-colitis in mice [14,17]. Using the whole
food approach, we were not able to conclude which bioactive component in GP was responsible for
protection against DSS-induced damages. Based on the previous investigations, the protective effect of
GP can be attributed to the active Bowman-Birk inhibitor present in pea protein [14,17] and/or dietary
fiber [12]. Dietary fiber in chickpea modulated the gut microbiota and enhanced SCFA production,
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correlating with improved gut epithelial barrier function [13]. These results suggested that GP might
modulate gut microbiota to exert its protective effects on DSS-induced colitis.

5. Conclusions

GP supplementation reduces the severity of DSS-induced colitis in mice challenged with the HFD
by reducing inflammation, mucosal loss, and the ER-stress signaling, GP possesses anti-inflammatory
properties in DSS-induced colitis in mice fed a HFD, and can be used as a potential dietary management
to reduce risk of IBD development.

Supplementary Materials: The Supplementary Material are available online at www.mdpi.com/2072-6643/9/
5/509/s1, Figure S1: An overview of experimental design, Figure S2 Feed intake and body weight of HFD
and HFDGF fed mice before DSS-induction, Table S1: Composition of the experimental diets used in the study,
Table S2: Primer sequences for quantitative reverse transcription PCR.
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Dietary Hibiscus sabdariffa L. mitigates preneoplastic lesions development in distal
colon by increasing fecal short-chain fatty acids concentration and infiltration of

Natural Killer cell
ABSTRACT

Background. Colorectal cancer (CRC) is the third leading cause of cancer-related
deaths worldwide. Present data has reported the role of anthocyanin-rich
food/extract in increasing fecal short-chain fatty acids (SCFA) concentrations and
NK cells infiltration in the large intestine mucosa, thus contributing to prevent
preneoplastic lesions formation. Here we hypothesized whether carcinogen-
induced aberrant crypt foci (ACF) progression in BALB/c mice fed a diet containing
dietary Hibiscus sabdariffa L. (HS) is suppressed by modulation of fecal SCFA and
NK cells infiltration. Furthermore, we also investigate whether such
supplementation might induce hepatoprotective effects. Methods. Nutritional
composition, total phenolic and total monomeric anthocyanin content were
assessed in HS calyces. Preneoplastic colorectal lesions were induced in male
BALB/c mice by injecting 1,2-dimethylhydrazine (20 mg/kg body weight)
intraperitoneally. Mice were fed control or supplemented diet containing either 5 or
10% dietary HS for 14 weeks. ACF counts, fecal SCFA concentrations and
leukocytes infiltration were assessed. Results. Polyphenol and anthocyanin
contents in HS calyces were found to be 57.84 mg GAE/g dw HS and 7.81 mg
cyanidin-3 glucoside/ dw HS, respectively. Supplementation with 5 or 10% dietary
HS attenuated colonic ACF development in the distal colon (P < 0.01). Total ACF
counts per mouse was reduced by almost 29.0% in HS supplemented groups
when compared to control (P < 0.01). Fecal butyric and propionic acids
concentrations, in addition to NK cell infiltration, were increased with 10% dietary
HS supplementation. Hepatic catalase activity was enhanced in 10% dietary HS-
treated mice when compared to control group (P < 0.01). Conclusions. Colonic
preneoplastic lesions in carcinogenic-induced male BALB/c mice are mitigated by
HS dietary treatment probably due to modulation of SCFA and NK cell infiltration.
We might also infer that 10% dietary HS is quite more effective when compared to
5%.
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1. Introduction

Cancer is a multifactorial chronic disease mainly identified by unrestrained clonal
expansion and spread of abnormal cells (1). Specifically, colorectal cancer (CRC),
the third most common cancer in both men and women in the United States (2),
involves the onset of pre-neoplastic lesions, known as aberrant crypt foci (ACF),

and increased replication of the upper crypt cells (3).

A possible role of increased immune cytotoxicity has been related to ACF onset
(4). Natural Killer (NK) cells are minor granular lymphocytes of the innate lymphoid
cell family with potent cytolytic activity and precise cytotoxic function (5). Identified
in lymphocytic infiltrates, NK cells have been increasingly speculated given its
strong antitumor potential (6). NK cells functions are tightly regulated to prevent
the killing of healthy cells (7). Differently from noncancerous cells, preneoplastic
cells do express specific receptors on the cell surface (8). NK cells are then able
to recognize abnormal cells and initiate the effector immune response by releasing
granules containing perforin, a membrane-disrupting protein, tumor necrosis
factors (9) and other chemokines (10). Importantly, NK cell-mediated cytolysis

might be more sensitive to cancer cells in the early stage of differentiation (11).

NK cells interaction with target cancer cells seems to be involved with gut
microbiota metabolites. Short-chain fatty acids (SCFA), mainly butyric acid but also
propionic acid in a lesser extension, have been recognized as histone deacetylase
(HDAC) inhibitors (12, 13). HDAC inhibitors can trigger hyperacetylation of
histones, thus regulating the expression of silent genes related to apoptosis and
cell cycle arrest (14, 15). Furthermore, the crosstalk between HDAC inhibitors and
NK cells killing has been stablished (16). HDAC inhibitors activates specific
pathways, which in turn improve the immunorecognition of cancer cells by NK cells
(17, 18).

In this regard, because anthocyanin has contributed to increase fecal butyric acid
concentrations (19) and modulate human gut microbiota in vitro towards a positive
butyrate-producing bacteria growth (20), we here hypothesized that dietary

Hibiscus sabdariffa L. (HS) consumption might increase fecal SCFA
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concentrations and NK cells infiltration, thus contributing to abrogate 1,2-

dimethylhydrazine-induced colorectal carcinogenesis in BALB/c male mice.

HS calyces are a rich source of anthocyanins (21, 22) and can be widely used for
consumption, e. g. teas, jams, and jellies (23). Isolated compounds from HS are
often used as chemopreventive agents (24, 25). In addition, HS or anthocyanin-
rich extracts from HS have demonstrated no hepatotoxic action in vivo or in vitro
(26-28). However, identifying whole foods, not only extracts, with antitumor
properties is a noble research field in nutrition that provides natural and cheap

alternatives to promote relevant heath benefits and, hence, CRC prevention.
2. Methods
2.1. HS calyces acquisition and Nutritional Composition

HS calyces were fully acquired from a local market in Vigosa — MG, Brazil,
immediately powdered, and kept frozen (-40°C) until analysis at the Food Analysis
lab. Chemical composition was evaluated following the standard methodologies
proposed by the Association of Official Analytical Chemists — AOAC (29). In brief,
fresh HS calyces (~ 10g) were allowed to dry until constant weight at 105°C to
determine moisture (%) content (29). Crude protein (g/100g) was performed by
Kjeldahl technique and calculated as nitrogen x 6.25 (29). Fat (g/100g) was
determined by the Soxhlet extraction system using ethyl ether and quantified
gravimetrically (30). Dietary fiber (g/100g) was assessed by the AOAC enzymatic-
gravimetric method (31). Ash (g/100g) content was performed by the residue left
procedure using a muffle furnace at 550°C and quantified gravimetrically (29). As
proximate analysis was carried out, carbohydrate (g/100g) was obtained according
to the following calculation [100 - (Moisture + Crude protein + Fat + Dietary fiber +
Ash)]. All analyses were performed on a dry weight (dw) basis, except for moisture

content.

2.2. Extraction of polyphenols in Hibiscus sabdariffa L. calyces
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The extraction of polyphenols in HS calyces was performed at the Nutritional
Biochemistry lab according to a modified version of the procedure proposed by
Tseng and co-workers (32). Dried and powdered HS calyces were weighed (1 g)
and mixed with ethanol: water (80:20, v/v) under continuous stirring for 30 minutes
at room temperature. Extraction was performed in the dark and used to measure

total phenolic compound content and total monomeric anthocyanins.
2.3. Total Phenolic Compound Assessment

The content of soluble phenols was determined at the Nutritional Biochemistry lab
using the Folin-Ciocalteu method with some modifications (33). The formation of
both phosphotungstate and phosphomolybdate anions turn the mixture into a
bluish color and hence can be measured spectrophotometrically at 760 nm (34).
Briefly, an aliquot (500 uL) of blank (distilled deionized water), standard (gallic acid,
50 g/L) or filtered HS extract was pipetted into a test tube and mixed with 2.5 mL
of the Folin-Ciocalteu reagent. After standing at room temperature for 2 minutes,
a solution of sodium carbonate (75 g/L, 2 mL) was added and vortexed until
thoroughly mixed. The solution was left standing for 15 minutes and then
immediately cooled down to room temperature. The absorbance was measured at
760 nm using a Multiskan GO microplate spectrophotometer (Thermo Scientific).
Results were expressed as milligram of Gallic Acid Equivalent per gram dry weight
HS (mg GAE/g dw HS). The yellowish FC reagent contains phosphotungstic and
phosphomolybdic acids, which are reduced by polyphenolic antioxidants upon

addition of an alkaline solution.
2.4. Quantification of Total Monomeric Anthocyanins

Total monomeric anthocyanins were determined at the Nutritional Biochemistry lab
by the classical pH differential method as described by Lee and co-workers (35)
with some modifications. The anthocyanin structure is reversibly modified
according to the solution pH. At pH 1, the flavylium cation is predominantly formed,
thus conferring a reddish color to the solution. By increasing the pH to 4.5, most

anthocyanins are in a non-colored hemiketal form and, therefore, present little or
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no absorbance at this pH (35). In brief, the sample appropriate dilution factor was
necessary to be previously determined by mixing different sample aliquots (2.5-
25.0 ul) with potassium chloride buffer (0.025 M, 200 uL, pH 1) in order to find the
best absorbance within the linear range of the spectrophotometer at 520 nm. Once
settled, the sample appropriate dilution factor (15 uL) was then pipetted into a 96-
well plate containing potassium chloride buffer (0.025 M, 200 uL, pH 1) or sodium
acetate buffer (0.4 M, 200 uL, pH 4). Distilled deionized water was used as blank.
After standing for 30 minutes at room temperature in the dark, the absorbance was
measured at 520 nm and 700 nm (to correct for haze) in a Multiskan GO microplate
spectrophotometer (Thermo Scientific). Total monomeric anthocyanin content was
calculated as milligram cyanidin-3 glucoside per gram dry weight HS (mg cyanidin-

3 glucoside/g dw HS) according to the following formula:

TMA (mg/L) = [(AbSs20nm — AbS700nm)pH1.0 — (ABS520nm — ABS7000m)pH4.5] x MW x DF
x 1000 x &7,

where TMA, total monomeric anthocyanin; Abs, absorbance; MW, molecular
weight of cyanidin-3 glucoside = 449.2; DF, dilution factor; €, extinction coefficient
26,900 L.cm™'mol™.

2.5. Animal Care and Experimental Design

Seven-week-old male BALB/c mice were obtained from the Central Bioterium
(Centro de Ciéncias Bioldgicas e da Saude) of the Universidade Federal de
Vigcosa, Brazil. The animals were housed at the Experimental Nutrition lab in a
temperature-controlled room (22 + 2°C) with a 12-hour light/dark cycle and ad
libitum access to water and food. Animal protocol was approved by the Ethics
Committee on Animal Experimentation from the Federal University of Vigosa,
Brazil, under the process number 10/2017. Upon arrival, animals were randomly
assigned to three experimental groups and fed during 14 weeks either a
supplemented AIN-93M (36) containing O (control group, n=13), 5 (5HS group,
n=14) or 10% (10HS group, n=15) dietary HS (dried powder from HS calyces), as

shown in Table 1.
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Table 1. AIN-93M diet for control and supplemented groups.

| di Groups

ngredients (g) Control’ 5HS? 10HS®
Cornstarch 46.56 46.56 46.56
Casein 14.0 14.0 14.0
Dyetrose 15.5 15.5 15.5
Sucrose 10.0 10.0 10.0
Cellulose 5.0 4.54 4.08
Mineral mix 3.5 3.5 3.5
Vitamin mix 1.0 1.0 1.0
L-Cystine 0.18 0.18 0.18
Choline bitartrate 0.25 0.25 0.25
t-Butylhydroquinone 0.0008 0.0014 0.0014
Soybean oil 4.0 4.0 4.0
Dietary HS 0.0 5.0 10.0

AIN-93M, American Institute of Nutrition for maintenance. 'Control group, AlM-
93M; 25HS group, AIM-93M supplemented with 5% dietary HS; *10HS group, AIM-
93M supplemented with 10% dietary HS.

According to the nutritional composition, HS calyces contain insignificant amounts
of carbohydrate, crude protein and fat (Table 2). However, HS calyces presents
9.2% as total dietary fiber. Thus, all supplemented diets were properly corrected
by the amount of cellulose. Food was changed on a daily basis to avoid oxidation

of anthocyanins or other polyphenols.

We have supplemented the animals with 5 or 10% dietary HS (powdered calyces)
taking into consideration that such dosages can be easily consumed by humans.
The human equivalent amount of dietary HS consumed by male BALB/c mice was
performed using the body surface area normalization method as previously
describe (37). For instance, mice in SHS group were supplemented with 5% dw
dietary HS, i.e. 50 g/kg diet. In other words, dietary HS supplemented diet contains
50 g dietary HS/kg diet. In our study, the average daily food intake was 6.72 g.
Therefore, 50 g/1,000 g diet x 6.72 g diet/day = 336 mg dietary HS daily.
Accordingly, if the average mice body weight was 43.38 g, then 336 mg/43.38 g x
1,000 g = 7,745.5 mg/Kg diet per day. As reported by the group of Reagan-Shaw
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(37), the human equivalent dose (mg/kg) = animal dose (mg/kg) x (animal Ky
factor/human Ky, factor). Thus, human equivalent dose (mg/kg) = 7745.5 mg/kg x
(3/ 37) = 628.01 mg/kg. Considering that the average human adult weight is 60 kg,
this is equal to 628.01 mg/kg x 60 kg = 37,680.6 mg, which converts to 37.7 g daily

for humans approximately.

All animals at 9-week-old were received a single weekly intraperitoneal injection of

1,2-dimethylhydrazine (DMH, 20 mg/kg body weight) for 8 weeks, as shown in

Figure 1.
| DMH STUDY DESIGN |
DIETARY TREATMENT
14 WEEKS
-2 weeks Week 0 Week 8 Week 12
BEGINING OF DIETARY HS 1st DMH injection 8th DMH injection END OF DIETARY HS TREATMENT
TREATMENT NECROPSY
(7-week-old male BALB/c mice) (20 mg/kg bw) (20 mg/kg bw) (21-week-old male BALB/c mice)
ABERRANT CRYPT FOCI STIMULATION
8 WEEKS
T T
Colon (n=7) Aberrant crypt foci counting
Control group 5HS group 10HS group : v=7) = —
(n=13) (n=14) (n=15) eces (n=. concentration

Colon (n=6) Immunophenotyping
Liver (n=6) Hepatic enzymes activity

Serum (n=10) Hepatic biochemical parameters

Figure 1. Experimental protocol and analysis for 1,2-dymethylhydrazine-induced
colorectal carcinogenesis in male BALB/c mice supplemented with 5 or 10%
dietary HS. * Number of animals randomly selected in each group.

2.6. Tissue Harvesting

Mice were anesthetized at the Experimental Nutrition lab with 3% isoflurane and
blood was collected from the retro-orbital sinus. Mice were then euthanized by
cervical dislocation. The entire colon was dissected, flushed with PBS buffer to
remove luminal contents, cut opened along the mesenteric margin, and then fixed
in karnovsky solution for 24 hours for ACF analysis. Fecal samples were collected
one week before euthanasia and used for SCFA analysis. For
immunophenotyping, after dissection, colon was flushed with cold PBS buffer (pH

7.2), sliced in small pieces, and incubated in DMEN medium (Sigma-aldrich™) for
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90 minutes at 37°C. Meanwhile, livers were excised, weighed, immediately frozen

in liquid nitrogen, and kept at -80°C until determination of hepatic enzymes activity.
2.7. Aberrant Crypt Foci Counts

Following fixation, flat colons were equally divided into three segments (proximal,
medium, and distal) and stained with 0.1% methylene blue for fours minutes
(Nutritional Biochemistry lab) to quantify aberrant crypt foci under a BX-60 light
microscope (Olympus, Tokyo, Japan) with a magnification of 20X. Since ACF size
is closely related to the risk of developing colon tumors (38), ACF were counted

and categorized as containing up to three aberrant crypt focus (39).
2.8. Fecal SCFA Quantification

SCFA quantification was assessed according to Smiricky-Tjardeset (40) with some
modifications. Briefly, 50 mg of frozen feces were weighted and thoroughly
vortexed with deionized water (950 ulL). During incubation on ice for 30 minutes,
samples were homogenized every 5 minutes for 2 minutes. Samples were
centrifuged (10,000 x g, 30 minutes, 4°C) three times and the supernatants were
then collected. The final supernatant from each sample was filtered through a 0.45
um membrane and transferred to vials. Acetic, propionic and butyric acids were
measured at the Clinical Analysis lab by high performance liquid chromatography
- HPLC (Shimadzu®) on an Aminex HPX 87H column (300 x 7,8 mm, Bio-rad®, Rio
de Janeiro, Brazil) at 32°C with acidified water (0.005 M H,SO,) as eluent at a flow
rate of 0.6 mL/minute. The products were detected and quantified by an ultraviolet
detector (model SPD-20A VP) at 210 nm. Acetic, propionic, and butyric acid
(SUPELCO®) standard curves were performed. Results are expressed as umol
SCFA/g feces.

2.9. Determination of Leukocytes by Immunophenotyping
Leukocytes were quantified and characterized in the large intestine mucosa as

previously described (41) with some modifications. In brief, after DMEN medium
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incubation for 90 minutes at 37°C, the suspension was centrifuged three times at
42 x g for 5 minutes and once again at 543 x g for 10 minutes. After each
centrifugation the supernatant was pipetted and wasted. The remaining pellet was
then resuspended with PBS buffer (100 ulL, pH 7.2). Cell viability was assessed
with Trypan blue exclusion and cells were counted in a Neubauer chamber.
Leukocytes obtained were incubated with following antibodies according to the
manufacturer’s instructions: anti-CD4 (PeCy5), anti-CD25 FITC-conjugated, anti-
CD196 or anti-CCR6 PE-conjugated, anti-CD49b or anti-PanNK APC-conjugated,
anti-CD8 PECy7-conjugared (Biolegend, San Diego, CA, USA). Leucocytes
(1x10* events) were acquired (FACSVerse™ and BD FACSuite software; BD
Biosciences PharMingen San Jose, CA, USA) at the Microscopy and
Microanalysis Center according to size (forward scatter) and granularity (side
scatter). Single or two color staining was used to identify TCD4 lymphocytes
(CD4%), TCD8 Iymphocytes (CD8"), regulatory T cell (CD4'CD25%), Th17
lymphocytes (96%) and Natural Killer cell (CD49b"). Results are expressed as
mean + SD of the percentage of each antibody specific stained subpopulation

within the gated cells.
2.10. Determination of Hepatic Enzyme Activity

Preparation of Liver Homogenate. Liver samples were weighed (150 mg) and
properly homogenized in ice-cold EDTA-containing potassium phosphate buffer
(1.5 mL, pH 7.4) using an Ultra-Turrax homogenizer (IKA T10 basic). The
homogenate was centrifuged at 10,000 x g for 10 minutes, at 4°C. The supernatant
was then pipetted into eppendorf tubes and used for further hepatic enzyme
analyses. Catalase Activity. Hepatic catalase (CAT) activity was assessed at the
Nutritional Biochemistry lab according to the method proposed by Aebi (42), where
the hydrogen peroxide (H2O2) removal is periodically (0, 30, and 60 seconds)
monitored using a Multiskan GO microplate spectrophotometer (Thermo Scientific)
at 240 nm. CAT activity was normalized to protein content in the liver and
expressed as units per mg protein (U CAT/mg protein). Protein content was

determined as described by Lowry and co-workers (43) and bovine serum albumin
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(1.6 mg/mL) was used as standard. Superoxide Dismutase Activity. Hepatic
superoxide dismutase (SOD) activity was measured spectrophotometrically
(Multiskan GO, Thermo Scientific) at 570 nm according to Dieterich and co-
workers with minor modifications (44). Briefly, liver homogenate (30 ulL) was
pipetted into 96-well plates and mixed with EDTA-containing phosphate buffer (99
uL, pH 7.0) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(tetrazolium dye MTT, 5.5 g/L phosphate buffer, 6 ulL). Pyrogallol (0.0125 g/L
phosphate buffer, 15 uL) was then added and the plates were incubated for 5
minutes, at 37°C. Finally, dimethyl sulfoxide (DMSO, 150 ulL) was used to stop
reaction. EDTA-containing phosphate buffer (45 uL, pH 7) was used as blank. SOD
activity was also normalized to the protein content in the liver and expressed as

units per mg protein (U SOD/mg protein).
2.11. Hepatic Serum Markers

Serum markers of liver function, such as aspartate aminotransferase (AST) alanine
aminotransferase (ALT), and gamma glutamyltransferase (GGT) were assessed
at the Clinical Analysis lab by specific colorimetric assays (Bioclin®, Brazil) using a
clinical chemistry analyzer BS-200 (Mindray®). Results are expressed as mean =
SD (U/L).

2.12. Statistical Analysis

The results were expressed as mean + SEM. Data were analyzed using GraphPad
Prism version 6.0. Mean values of the three groups (control, 5HS, and 10HS) were
compared by one-way analysis of variance (ANOVA) followed by Tukey’s multiple

comparison post-hoc test. P < 0.05 was considered to be statistically significant.
3. Results and Discussion

3.1 Nutritional Composition of Hibiscus sabdariffa L. Calyces
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In order to better characterize and provide valuable information on edible flowers,
the general proximate nutritional composition was determined in HS calyces on a

dry basis, as detailed in Table 2.

Table 2. Nutritional composition of Hibiscus sabdariffa L. calyces.

Nutritional Composition (g) Nutritional value per 100 g*

Crude protein 3.61+0.26

Fat 0.66 +0.13

Total dietary fiber 9.22+2.79
Soluble dietary fiber 1.76 + 0.14
Insoluble dietary fiber 7.46 + 2.64

Ash 2.69 = 0.01

Carbohydrate 0.47 + 0.32

* Data are expressed as mean + SD from triplicate analyses.
3.1. Total Phenolic Compound Assessment

The amount of total phenolic compounds found in our study was 57.84 mg GAE/g
dw HS. Although the content of polyphenols in plants is considerably influenced by
cultivars, genetic factors, and environmental conditions (30), Borras-Linares and
co-workers (21) have observed similar total polyphenol content in HS extract (51
mg GAE/g dw HS). Interestingly, it is important to highlight that extraction-related
variables, such as type of solvent, solvent ratio, temperature, and pH may

contribute to differences in total phenolic content (45).
3.2. Quantification of Total Monomeric Anthocyanins

In our study, the total monomeric anthocyanin content was found to be 7.81 mg
cyanidin-3 glucoside/g dw HS. The total monomeric anthocyanin content can be
easily and accurately measured by the pH differential spectrophotometric method
(46). It seems the amount of monomeric anthocyanins differs among different
varieties (47). In a previous study (47), analysis of dried calyces from three HS
varieties has revealed a range from 0.20 to 3.45 mg cyanidin-3 glucoside/g dw HS
in the monomeric anthocyanin content. When compared to our results, although

Gartaula and Karki (48) have reported lower amount of monomeric anthocyanin
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(3.1 mg cyanidin-3 glucoside/g dw HS) detected spectrophotometrically, Abou-
Arab and co-workers (49) have shown similar anthocyanin content (6.2 mg

cyanidin-3 glucoside/g dw HS) by colorimetrically analysis.
3.3. Dietary HS Suppresses Aberrant Crypt Foci Development

There were no significant differences in body weight (Figure 2A) and feed intake

among groups (Figure 2B).
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Figure 2. (A) Effects of HS dietary treatment on weekly body weight (g) in BALB/c
mice. (B) Feed intake (g) during 14 weeks of HS dietary treatment.

ACF are initial recognizable premalignant lesions (39), which have been
considered as a putative precursor to colorectal adenoma (50) and thus could be
a useful biomarker for CRC (51). Table 3 shows the effects of supplemented diets
containing either 5 or 10% dietary HS on DMH-induced ACF formation. Although
ACF with higher number of aberrant crypts (ACF > 3) are more likely to progress
to tumor during colorectal carcinogenesis (38), ACF > 3 were not found in our
study, probably because this is a short-term study. Nevertheless, dietary treatment
with 5 or 10% dietary HS for 14 weeks attenuated ACF< 3 development in the
distal colon segment of male BALB/c mice (P < 0.01) by 34.5% and 47.9%,
respectively. In addition, the total number of ACF per mouse was reduced by
almost 29.0% in both HS supplemented groups when compared to control (P <
0.01). No differences were observed in the proximal and medial colon among
groups. At our knowledge, this is the first study assessing the effects of dietary HS

in DMH-induced colorectal tumorigenesis in male BALB/c mice. Accordingly, other
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studies (52-54) have also reported protective effects of anthocyanins-rich

food/extracts against drug-induced CRC tumorigenesis.

Table 3. Effects of supplemented diets containing either 5 or 10% dietary HS on
DMH-induced ACF formation.

Groups

Colon segments

Control (n=7) 5 HS (n=7) 10 HS (n=7)
Proximal colon
ACF <3 32.83 + 13.19° 25.57 + 8.94° 29,00 + 8.12°
Medial colon
ACF <3 30.00 + 11.06° 21.29 + 6.67° 23,57 + 4.86°
Distal colon
ACF <3 40.33 + 5.31° 26.43 + 8.87° 21,00 + 5.85°
Total ACF < 3* 103.2 + 22.46° 73.29 + 13.96° 73.57 +9.07°

Data are expressed as mean = SD. Different letters in the same line mean
statistical difference by the Tukey’s multiple comparison post-hoc test (P < 0.05).
* Total number of ACF in colon segments (proximal, medial, and distal).

3.4. Dietary HS Increase Fecal SCFA Concentration

Figure 3 shows fecal concentrations in mice treated with 5 or 10% dietary HS.
SCFA are key metabolites produced by the gut microbiota fermentation of
undigested food substances, such as dietary fiber (55). The role of anthocyanin-
rich food on gut microbiota modulation (56) and recently on fecal SCFA
concentrations has been reported (19). Acetic acid has been implicated as anti-
inflammatory and antitumor effectors via the modulation of Treg cells (57).
Moreover, intracellular butyric and propionic acid, but not acetic acid, inhibit the
activity of HDAC in colonocytes and immune cells, which in turn affects gene

expression and cellular differentiation (58).
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Figure 3. Fecal SCFA concentration (umol SCFA/g feces) in DMH-induced
colorectal carcinogenesis. (A) Supplemented diet with 5 or 10% dietary HS did not
affect fecal acetic acid concentration. (B) 10% dietary HS supplemented diet
increase fecal propionic acid concentration when compared to control diet. (C)
Fecal butyric concentration is higher in BALB/c mice supplemented with 10%
dietary HS when compared to controls. Data are expressed as mean = SD (n=7).
* Kruskal-Wallis followed by Dunn’s multiple comparison test (P < 0.05). ** ANOVA
followed by Tukey’s multiple comparison test (P < 0.05).

According to our results, diets supplemented with 5 or 10% HS did not affect fecal
acetic acid concentration (Figure 3A). On the other hand, compared to controls,
fecal propionic and butyric acid concentration were both enhanced (P < 0.05) with
10% dietary HS supplement diet (Figure 3B and 3C, respectively). Although the
underlying molecular mechanisms are not fully understood, anthocyanins from
black rice, black soybean, and purple corn have also induced an effective and
positive increment in fecal butyric acid levels (19). Despite the lack of studies
assessing the effects of anthocyanins or anthocyanin-rich food on fecal propionic

acid concentration, anthocyanidins, i.e. anthocyanins with no sugar moiety
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attached to the molecular structure (59), from strawberries were positively

associated to the human fecal propionic acid content (60).

SCFA, mainly propionic and butyric acid, have an important influence on colorectal
carcinogenesis in vivo (61). In vitro, such gut metabolites are also responsible to
inhibit colon cancer cells growth and stimulate cell differentiation (62). Several
molecular mechanisms have been proposed by the scientific community to explain
the interplay between SCFA and CRC prevention (63). One of the mechanisms is

related to stimulation of NK cells infiltration in the intestine mucosa.
3.5. Dietary HS Stimulates NK Cell Infiltration in the Colonic Mucosa

Figure 4 represents the percentage of leukocytes obtained from the large gut
mucosa of BALB/c mice supplemented with 5% or 10% dietary HS. Our results
have shown no differences in the percentage of CD4 cells (Figure 4A), CD8 cells
(Figure 4B), Treg cells (Figure 4D), and Th17 cells (Figure 4E). However, 10%
dietary HS supplemented diet increased NK cells infiltration in the large intestine
mucosa when compared to either control or 5% dietary HS supplemented diets.
Increased NK cells infiltration might partially explain why ACF counts were reduced
in BALB/c mice treated with 10% dietary HS (Figure 4C). Numerous studies have
found decreased NK cell function in cancer patients (64, 65). NK cells are cytotoxic
lymphocytes involved in immunosurveillance against tumor formation (66).
Besides releasing chemokines, NK cells can also express programmed cell death
protein 1 (PD1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4), which
have been already implicated in cancer therapy (67). Furthermore, as we have
previously demonstrated, BALB/c mice have shown higher fecal butyric acid

concentrations when also supplemented with 10% dietary HS.
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Figure 4. Leukocytes obtained from the large gut mucosa of BALB/c mice
supplemented with 5% or 10% dietary HS after 14 days of experiment. (A)
Percentage of CD4; (B) Percentage of CD8; (C) Percentage of NK; (D) Percentage
of Treg; (E) Percentage of Th17. Data are expressed as mean + SD (n=6). *
ANOVA followed by Tukey’s multiple comparison test (P < 0.01).
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The mechanisms how butyric acid may prevent ACF formation is possibly related
to the activation of MHC class I-related chain A and B (MICA/B) receptors on the
cancer cell surface by HDAC inhibitors, which in turn activates receptors
expressed by NK cells, known as NK group 2, member D (NKG2D). Such
receptors stimulate MICA/B expression apparently due to enhanced glycogen
synthase kinase-3 (GSK-3) activation. The upcoming response is an enhanced NK

cell responsiveness to kill colon tumor cells (8).
3.6. Dietary HS Provides No Hepatotoxic Effects

Since we have noticed that supplementation with 10% dietary HS induces effective
changes in BALB/c mice metabolism towards cancer prevention, it is also of great
scientific interest to demonstrate whether such dietary HS intake amount would
cause harmful side effects on liver function. Anthocyanin-rich HS extracts have
been hepatoprotective and helpful against diseases where oxidative stress is
related to its etiopathogenesis, probably owing to its antioxidant and free radical
scavenging effects (68). Antioxidant free radical scavenging enzymes, such as
(CAT) and (SOD), play a key role on the first line of cellular antioxidant defense
system against reactive oxygen species (ROS) (39). Overproduction of ROS,
including superoxide anion (Oy’), hydrogen peroxide (H20;), and hydroxyl radical
(OH?¢), has been widely documented in the development and progression of overall
non-transmissible diseases (69). SOD transforms the superoxide anion into
hydrogen peroxide, which is then converted to water by CAT (70). Figure 5 shows
the effects of dietary HS supplementation on hepatic CAT and SOD activities.
According to our results, increased hepatic CAT activity (Figure 5A) was noticed
in 10% dietary HS-treated mice when compared to control group (P < 0.05). No
difference was noticed on hepatic SOD activity among groups (Figure 5B). Other
studies have also corroborated the hepatoprotective and chemopreventive
potential of increased CAT activity upon treatment with dietary HS (68, 71). The
hepatoprotective effect may be also predicted by measuring the levels of liver
serum marker enzymes, such as ASL, ALT, and GGT (72). Figure 6 shows the

effects of dietary HS on serum marker enzymes.
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Figure 5. Effects of dietary HS supplementation on hepatic CAT and SOD
activities. Data are expressed as mean =+ SD (n=6). (A) Units of CAT per mg
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Figure 6. Effects of supplementation with dietary HS on serum marker enzymes.
(A) Alanine aminotransferase — ALT (U/L); (B) Gamma glutamyltransferase (U/L);
(C) Aspartate aminotransferase — AST (U/L). Data are expressed as mean + SD
(n=10). No significant differences by the Tukey’s multiple comparison test.
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In our study, BALB/C mice supplemented with dietary HS did not ameliorate ALT
(Figure 6A) or GGT (Figure 6B) when compared to controls. Albeit we have
observed no statistically differences (P = 0.06) on AST serum levels among groups
(Figure 6C), we might consider that BALB/c mice supplemented with 10% dietary
HS (48 + 6.46 U/L) do exhibit a physiological and important reduction on such
parameter when compared to controls (55.8 =+ 7.80 U/L), which might also help
liver protection. Lower levels of hepatic enzymes upon treatment with anthocyanin-
rich extracts have been reported in vivo, thus conferring hepatoprotective effects
(73). No studies assessing the effects of dietary HS on serum liver parameters

were found.
4. Conclusions

Diet supplemented with 10% dietary HS prevent colorectal ACF formation possibly
owing to its anthocyanin content, which might positively modulate HDAC inhibitors,
such as butyric and propionic acids, whose response leads to NK cell infiltration in
the large intestine. Dietary HS has provided hepatoprotective effects by stimulating
the hepatic antioxidant enzyme system, such as catalase activity, along with a

tendency to reduce the serum levels of aspartate aminotransferase.

It is worth to mention that the beneficial and protective effects above reported in
male BALB/c mice consuming a diet supplemented with 10% dietary HS might also
be observed in humans if 75 g of dietary HS is daily intake (human equivalent
dose). Thus, our group is now intrigued to further reveal whether the potential of
dietary HS to prevent preneoplastic lesions development is indeed caused by the
upregulation of related proteins, such as HDAC, MICA/B, NKG2D and GSK-3.
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4. GENERAL CONCLUSIONS

Anthocyanins/anthocyanidins has effectively contributed to mitigate colorectal
carcinogenesis in both in vivo and in vitro experiments through several molecular
mechanisms. The intake of green pea, as a source of dietary fiber and
polyphenols, might confer protective effects against inflammatory bowel disease,
such as ulcerative colitis, by suppressing inflammation, mucin depletion and
endoplasmic reticulum stress in the colon. In addition, we may infer that dietary HS
intake reduces preneoplastic lesions development as a result of increased fecal
butyric and propionic acids concentrations and NK cell infiltration, thus preventing
colorectal carcinogenesis. More studies are still needed to determine the effects

of dietary green pea or HS supplementation on intestinal diseases in humans.
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