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A B S T R A C T

Although yacon (Smallanthus sonchifolius) is a known source of prebiotics (fructooligosaccharides (FOS) and
inulin) and phenolic compounds beneficial to gut microbiota and intestinal immune response modulation, its
regulatory mechanisms still remain unclear. Therefore, we investigated whether the consumption of a yacon-
based product (PBY) modulates the population of intestinal lymphocytes as well as transcription factors that
drive host adaptive immune responses. For this purpose, BALB/c male mice were fed either a standard AIN-93M
diet or AIN-93M diet supplemented with PBY (6.0% FOS+ Inulin) for 8 weeks. We found that PBY consumption
in mice reduced food intake, improved fecal humidity and viscosity, intensified fecal short-chain fatty acid
production, increased the number of regulatory T cells, and downregulated the expression of RORγt transcription
factor in the colon. Thus, it can be inferred from the findings that PBY consumption improves satiety and
mucosal integrity, and possibly favors anti-inflammatory immune responses in the colon.

1. Introduction

Yacon (Smallanthus sonchifolius) is a tuberous root rich in phenolic
compounds and considered prebiotic due to its high fructooligo-
saccharides (FOS) and inulin content (Choque Delgado, Thomé,
Gabriel, Tamashiro, & Pastore, 2012; Russo, Valentão, Andrade,
Fernandez, & Milella, 2015). FOS and inulin are fructose oligomers
composed mainly of α (2→ 1) or β (2→ 6) linkages which are not
hydrolyzed by human digestive enzymes thus remain intact in the colon
(Fernández et al., 2013). As a result, these fructans serve as fermentable
substrates for probiotic bacteria (Gibson & Roberfroid, 1995).

The consumption of yacon has been reported in the literature to
increase the number of Bifidobacteria and Lactobacilli (de Souza Lima
Sant’Anna, Rodrigues, Araújo, de Oliveirado Carmo Gouveia Peluzio, &

de Luces Fortes Ferreira, 2015; Utami et al., 2013) and concurrently
inhibit the growth of pathogenic bacteria (Sant’Anna et al., 2018; Veiga
et al., 2014). Interestingly, the number of probiotic bacteria directly
reflects the production of fecal short-chain fatty acids (SCFA) (Grancieri
et al., 2017; Sant’Anna et al., 2018; Utami et al., 2013; Vaz-Tostes et al.,
2014). Yacon consumption also improves intestinal transit (de Souza
Lima Sant’Anna et al., 2015; Geyer, Manrique, Degen, & Beglinger,
2008; Sant’Anna et al., 2018), satiety and body weight (Genta et al.,
2009; Gomes da Silva et al., 2017). In addition, it confers antiobesity
properties by inhibiting adipogenesis (Honoré, Grande, Gomez Rojas, &
Sánchez, 2018). Other metabolic benefits have been commonly re-
ported such as glycemia control (Honoré et al., 2018; Scheid, Genaro,
Moreno, & Pastore, 2014), decrease in total cholesterol and triglycer-
ides levels, as well as improvement in high-density lipoprotein-
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cholesterol levels (Habib, Honoré, Genta, & Sánchez, 2011; Habib,
Serra-Barcellona, Honoré, Genta, & Sánchez, 2015; Roselino et al.,
2012).

Yacon consumption is capable of improving intestinal architecture
and cellularity despite regulating the number and depth of intestinal
crypts (Lobo, Colli, Alvares, & Filisetti, 2007; Sant’Anna et al., 2018),
which in turn increases the intestinal absorption of calcium, magnesium
and iron, and calcium deposition in bones (Lobo et al., 2007; Lobo,
Gaievski, De Carli, Alvares, & Colli, 2014; Rodrigues et al., 2012). Re-
garding immunological benefits, yacon intake increases secretory im-
munoglobulin A (IgA) production in feces (Choque Delgado et al., 2012;
Grancieri et al., 2016), serum cytokines related to anti-inflammatory
processes, such as interleukin (IL)-10 and IL-4 (Bonet et al., 2010;
Grancieri et al., 2017; Vaz-Tostes et al., 2014), and phagocytic activity
of macrophages (Paredes et al., 2018). Furthermore, it has been re-
ported that yacon consumption promotes the regression of pre-neo-
plastic lesions in experimental models of colorectal carcinogenesis (de
Moura et al., 2012; Grancieri et al., 2017), and it presents a high in vivo
antioxidant activity (Habib et al., 2015).

Evidently, the health benefits of yacon consumption are mainly
attributed to the modulation of the intestinal microbiota (de Souza
Lima Sant’Anna et al., 2015; Utami et al., 2013) and intestinal immune
response (Bonet et al., 2010), however the regulatory mechanisms in-
volved in these events remain unclear and unexplored. Studies have
shown that probiotic bacteria may induce anti-inflammatory responses
through the activation of regulatory T cells (Treg cells) (Roselli et al.,
2009) and the attenuation of a pro-inflammatory microenvironment
through reduced IL-17 and IL-23 production (Ghadimi, Helwig,
Schrezenmeir, Heller, & de Vrese, 2012; Ichiyama et al., 2008; Tanabe,
2013).

Treg cells play an important role in immune response regulation
owing to the release of cytokines and immune modulating factors that
prevent exacerbated and auto immune responses (Josefowicz, Lu, &
Rudensky, 2012). Alternatively, T-helper-17 (Th17) cells seem to re-
lease pro-inflammatory cytokines, such as IL-17A, IL-17F, IL-21, IL-22,
tumor necrosis factor α (TNF-α), and IL-6, associated with in-
flammatory bowel disease and colorectal cancer progression (Cătană
et al., 2015; De Simone et al., 2015). The immune cell phenotype is
targeted by specific transcription factors such as FOXP3, the key tran-
scription factor for Treg cells differentiation and RORγT, the crucial
Th17-lineage transcription factor. Moreover, two important adaptive
immunity pathways are generated according to specific transcription
factors: T-bet, a hallmark of the Th1 cell lineage development, is re-
sponsible for interferon-gamma regulation (IFN-γ), IL-2, and TNF-α
genes (Szabo et al., 2000); and GATA-3, a Th2 cell lineage-promoter
factor, produces cytokines, such as IL-4 e IL-5, IL-6, IL-9 and IL-13
(Szabo et al., 2000; Zhang, Cohn, Ray, Bottomly, & Ray, 1997; Zheng &
Flavell, 1997).

It is hypothesized that the consumption of PBY, a source of FOS and
inulin, is able to modulate the intestinal microbiota of mice and con-
sequently increase the production of SCFA in feces. In addition, we
speculate that the modulation of the microbiota and the fermentation
products generated by the consumption of PBY could alter intestinal
immune response pathways, favoring an increase in the number of Treg
cells and attenuating the expression of immune response transcription
factors responsible for the activation of pro-inflammatory responses.
Given the above, we aimed to investigate the immunomodulatory re-
sponse triggered by PBY consumption in BALB/c male mice.

2. Material and methods

2.1. Animals and experimental design

Thirty-four BALB/c male mice were obtained from the Central
Bioterium (Health and Biology Science Center) of Universidade Federal
de Viçosa, Brazil. The animals were housed at the Experimental

Nutrition lab in a temperature-controlled room (22 ± 2 °C) with a 12-
hour light/dark cycle and had ad libitum access to water and food. The
animal protocol was approved by the Ethics Committee on Animal
Experimentation of Universidade Federal de Viçosa, Brazil, under the
process number 30/2016. Upon arrival, the animals were randomly
assigned to two experimental groups: CC, control diet (n= 16), and CY,
the group fed diet supplemented with PBY (n=18) (Table 1). The diets
were offered ad libitum for 8 weeks. Subsequently, the mice were an-
esthetized using 3% isoflurane and blood samples were collected from
the retro-orbital sinus. The mice were euthanized by cervical dislocation
and their tissues and feces were harvested for analysis.

2.2. Yacon-based product and experimental diet

Yacon was purchased from a local market in Viçosa – Minas Gerais,
Brazil. The yacon-based product was processed according to the
methodology proposed by Rodrigues et al. (2012) currently undergoing
a patent application process (PI 1106621-0). The chemical composition
of PBY (carbohydrates, proteins, fats, fiber, ash and humidity) was
determined according to the AOAC methodology (AOAC, 1997). FOS
and inulin content of the PBY diet was determined by High Performance
Liquid Chromatography (HPLC) using a BIO-RAD brand HPX-87p
column (lead stationary phase) whose mobile phase is purified water.

The experimental purified diets were based on the AIN93-M diet, as
recommended by the American Institute of Nutrition (Reeves, Nielsen,
& Fahey, 1993). PBY diet was supplemented with 6.0% FOS+ Inulin
from PBY (Table 1), as suggested by Paula et al. (2012). Casein, sucrose,
dextrinized starch, starch, and fiber in the control and PBY diets were
adjusted, aiming to obtain similar amounts of carbohydrates, lipids,
proteins, fibers and calories. The diets were made in pellets and stored
at −20 °C for a maximum period of thirty days before consumption.

The human equivalent amount of dietary PBY consumed by the
BALB/c male mice was calculated using the body surface area nor-
malization method as previously described (Reagan-Shaw, Nihal, &
Ahmad, 2007). PBY supplementation was 353,565 g PBY/kg of diet. In
our study, the average daily consumption was 6 g per mouse. This is
equivalent to 2121mg of PBY daily for an adult mouse of 45 g, which
approximately corresponds to 47 g PBY/kg body mass/day. Taking into
account that the average weight of an adult human is 60 kg, the
equivalent average daily consumption per day for humans is 229 g.

2.3. Body weight and dietary intake

To evaluate the weight loss/gain of the animals, individual body

Table 1
Composition of AIN-93M diet for control and PBY diet.

Ingredients (g/100 g) Control diet (g/kg) PBY diet (g/kg)

Casein 155.5 145.3
Dextrinized starch 155 148.2
Sucrose 100 0
Soybean oil 40 40
Fiber (microfine cellulose) 67 0
Mineral mix 35 35
Vitamin mix 10 10
L-Cystine 1.8 1.8
Choline bitartrate 2.5 2.5
Cornstarch 303 263.6
*PBY 0 353.6
Distilled water 130.2 0
Total weight (g) 1000 1000
Total energy (kcal) 3214 3064

* Centesimal composition and digestible content of carbohydrate, inulin and
FOS on PBY in 100 g of product: Fructose: 15.25 g; Glucose: 8.59 g; Sucrose:
6.35 g; FOS: 12.81 g; Inulin: 4.16 g; Total carbohydrate: 45.49 g; Fibers: 1.99 g;
Humidity: 36.82 g; Ashes: 3.39 g; Lipids: 0.21 g; Protein: 2.89 g. PBY, yacon-
based product.
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weight was recorded weekly using a digital weighing scale. Dietary
intake was determined based on the diet offered (g) minus diet waste.
This quantification was done every 3 to 5 days during the 8 week
dietary intervention period using a digital weighing scale. The data
represent diet consumption per cage (7 to 10 animals/cage). Diet
consumption (g) was corrected by humidity loss (fresh diet weight (g)/
diet weight (g) in the cage per day).

2.4. Fecal characteristics

Fresh excreted feces were harvested and stored at −80 °C for pH
determination. For each animal, an aliquot of feces was diluted in
distilled water (1:10), homogenized, and the pH was measured with a
duly calibrated digital pH meter (Hexis ultra Basic UB-10®) in a tem-
perature-controlled room for an adequate amount of time for pH sta-
bilization (Bedani et al., 2011).

Fecal humidity was determined using approximately 110mg of
moist feces. The feces were weighed in petri dishes, previously dried in
an oven for 24 h at 105 °C. Afterwards, the material (petri dish+ feces)
was placed in a desiccator until it reached ambient temperature, and
was later weighed for the determination of humidity using Eq. (1)
(Cecchi, 2007).

= −

×

∗ ∗humidity(%) (Initial Weight Final Weight )

100/(Sample Weight) (1)

*Initial and final weight: weight of the dishes containing the sam-
ples, before and after drying, respectively.

In the last week of the experiment, fresh feces were harvested and
used for fecal score. The following scale was considered: 1. Firm or
normal feces consistency; 2. Viscous non-diarrhea feces; 3. Watery feces
characteristic of diarrhea (De Freitas et al., 2006, with modifications).

2.5. Anatomical characteristics

After euthanasia, the organs (liver, spleen, small intestine, cecum,
colon, abdominal adipose tissue and kidney) were harvested, washed in
phosphate-buffered saline and weighed using a semi-analytical
weighing scale. Hepatosomatic index was obtained by dividing liver
weight by body weight of the animal. Colon length was measured from
the end of the cecum to the end of the rectum on a flat surface using a
millimeter ruler.

2.6. Analysis of serum biomarkers

After euthanasia, the blood of the animals was collected from the
retro-orbital sinus and centrifuged at 1190×g/10min/4 °C. The serum
markers: total cholesterol, triglycerides, gamma-glutamyl transferase
(GGT), aspartate aminotransferase (AST) alanine aminotransferase
(ALT), albumin, alkaline phosphatase, creatinine, and urea were as-
sessed by specific colorimetric assays (Bioclin®, Brazil) using a clinical
chemistry analyzer BS-200 (Mindray®). The results are expressed as
mean ± SEM.

2.7. Fecal SCFA quantification

SCFA quantification was performed according to the method of
Smiricky-Tjardes, Grieshop, Flickinger, Bauer, and Fahey (2003) with
some modifications. 50 mg of frozen feces, which was previously
weighed and thoroughly vortexed with deionized water (950 μL) was
used. While being incubated on ice for 30min, the samples were
homogenized every 5min for 2min. The samples were centrifuged
(10,000g, 30min, 4 °C) three times and the supernatants were collected.
The final supernatant from each sample was filtered through a 0.45 μm
membrane and transferred to vials. SCFA were measured by high per-
formance liquid chromatography - HPLC (Shimadzu®) using an Aminex

HPX 87H column (300×7,8 mm, Bio-rad®, Rio de Janeiro, Brazil) at
32 °C with acidified water (0.005M H2SO4) as eluent at a flow rate of
0.6 mL/minute. The products were detected and quantified by an ul-
traviolet detector (model SPD-20A VP) at 210 nm. Standard curves of
formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, iso-
caproic and caproic acids (SUPELCO®) were constructed. The results
were expressed as μmol SCFA/g feces.

2.8. Determination of leukocytes by immunophenotyping

Leukocytes were quantified and characterized in the mucosa of the
large intestine as previously described (Belkaid, Jouin, & Milon, 1996)
with some modifications. The colon was removed and washed in ice-
cold PBS (NaCl: 0.85%, NaH2PO4: 0.023%, NaHPO42H2O: 0.15%, pH
7.2), cut into small fragments and incubated in cell culture medium,
DMEN, pH 7.2 (Sigma-aldrich ™) for 90min at 37 °C, the suspension
was centrifuged three times at 42g for 5min in order to harvest the
supernatant, and lastly at 543g for 10min. After the last centrifugation,
the remaining pellet was resuspended with PBS buffer (100 μL, pH 7.2).
Cell viability was assessed with Trypan blue exclusion and the cells
were counted in a Neubauer chamber. The obtained leukocytes were
incubated with the following antibodies, according to manufacturer’s
instructions: anti-CD4 (PeCy5), anti-CD25 FITC-conjugated, anti-CD196
(anti-CCR6) PE-conjugated, anti-CD49b (anti-PanNK) APC-conjugated,
anti-CD8 PECy7-conjugated (Biolegend, San Diego, CA, USA). The
leukocytes (1× 104 events) were acquired (FACSVerse™ and BD FAC-
Suite software; BD Biosciences PharMingen San Jose, CA, USA) ac-
cording to size (forward scatter) and granularity (side scatter). One or
two stains were used to identify TCD4 lymphocytes (CD4+), TCD8
lymphocytes (CD8+), regulatory T cell (CD4+CD25+), Th17 lympho-
cytes (CD196+) and Natural Killer cells (CD49b+). The results are ex-
pressed as mean ± SEM of the percentage of each subpopulation of
antibodies specifically colored within the gated cells.

2.9. Real-time PCR

Total RNA was extracted from the whole colon using Trizol reagent
(Invitrogen™, Carlsbad, CA, USA) according to manufacturer’s instruc-
tions. cDNA was synthesized using 5 μg of RNA through an RT reaction
in a specific kit (GoScript™ Reverse Transcription System, Promega,
Madison, WI, USA). Random primer and RNAse free water were added
to the sample and heated for 5min at 70 °C. Subsequently, a mixture
containing the reverse transcriptase dNTPs and ribonuclease inhibitor
was added to the sample and heated for 60min at 37 °C. Real-time PCR
quantitative mRNA analyses were performed in an Applied Biosystems®
7500 Real-Time PCR System. Sybr green (Ludwig, Biotec), sense
primer, and antisense primer (400 nm/reação), DNase free water and
the sample (250 ng cDNA/µl) were added to each reaction. Standard
PCR conditions were used during the reading (7500 software V2.3,
Applied Biosystems®). The sequences of murine primers (Integrated
DNA Technologies®) were as follows: FOXP3, sense: 5′-AGG AGC CGC
AAG CTA AAA GC- 3′, antisense: 5′-TGC CTT CGT GCC CAC TGT-3′;
RORγt, sense: 5′-GGA GCT CTG CCA GAA TGA CC-3′, antisense: 5′-CAA
GGT TCG AAA CAG CTC CAC-3′; Tbet, sense: 5′-AGC AAG GAC GGC
GAA TGT T-3′, antisense: 5′-GGG TGG ACA TAT AAG CGG TTC-3′;
GATA3, sense: 5′-CAA TCT GAC CGG GCA GGT-3′, antisense: 5′-CAG
AGA CGG TTG CTC TTC CG-3′; GAPDH, sense: 5′-TCA ACA GCA ACT
CCC ACT CTT CCA-3′, antisense: 5′-ACC CTG TTG CTG TAG CCG TAT
TCA-3′.mRNA values were calculated according to the constitutive
GAPDH gene on the basis of the ΔΔCt algorithm.

2.10. Statistical analysis

The results were expressed as mean ± SEM. The data were ana-
lyzed using GraphPad Prism (version 6.0). The means were evaluated
by the Kolmogorov-Smirnov normality test, and the groups with a
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normal distribution were tested using the unpaired Student’s t-test. The
samples that did not follow a normal distribution were tested by the
Mann-Whitney test. Statistical differences were considered for
p < 0.05 (*) or p < 0.001 (**).

3. Results

3.1. PBY diet reduces food intake without weight gain

During the 8 week dietary intervention, there was no difference in
the body weight gain of the animals (Fig. 1A). However, food intake
was lower in the groups that received the PBY diet (p < 0,001)
(Fig. 1B), suggesting a possible satiety in the animals who received this
diet.

3.2. PBY diet increases fecal humidity and viscosity

Fecal characteristics were evaluated in order to verify the possible

interferences of PBY diet on feces production and intestinal transit.
There was no difference in the fecal pH of the animals treated with the
PBY diet when compared to the control diet group (Fig. 2A). However,
fecal humidity was higher in animals fed the PBY diet (p < 0,001)
(Fig. 2B). Predominantly, fecal score of the PBY group was classified as
stage 2 (viscous non-diarrhea feces), and stage 3 (watery feces char-
acteristic of diarrhea) (Fig. 2C).

3.3. PBY diet increases intestine weight without changing the anatomical
characteristics of visceral organs

Colon length and weight were higher in the PBY diet group
(p < 0,001) (Fig. 3A and B). The same was observed for the weight of
the cecum (p < 0,001), and the small intestine (p < 0,05) (Fig. 3C
and D). No differences were found in the weight of the liver, spleen,
abdominal adipose tissue and kidneys. The same was observed for the
hepatosomatic index (Fig. 3E–I).
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3.4. PBY diet does not alter the biomarkers of liver function; however, it
increases serum triglycerides

Serum biomarkers were evaluated in order to verify alterations in
liver and kidney functions, and lipid profile. There were no changes
between the groups in relation to serum levels of GGT, AST, ALT,
creatinine, alkaline phosphatase, and total cholesterol (Fig. 4). None-
theless, an increase in triglycerides and albumin was found as well as a
reduction in serum urea of the group fed the PBY diet (p < 0,05).

3.5. PBY diet increases the fecal short-chain fatty acids (SCFA)

Intestinal bacteria activity was evaluated by fecal SCFA concentra-
tion The PBY diet group presented higher levels of acetic (p < 0,001),
propionic (p < 0,05), butyric (p < 0,001), isovaleric (p < 0,05),
valeric (p < 0,05) e caproic (p < 0,05) fatty-acids compared to the
control group (Fig. 5).

3.6. PBY diet increases Treg cell number in the colon

Immunophenotyping of immune cells in the colon was performed to
evaluate the profile of intestinal lymphocytes. The analysis showed an
increase in the percentage of Treg cells (CD4+CD25+) in the PBY diet
group (p < 0,05) compared to the control diet group (Fig. 6). There
was no significant difference among the groups in relation to the per-
centage of CD4+ and CD8+ cells, CD8+/CD4+ ratio, NK cells, and

Th17 lymphocytes.

3.7. PBY diet reduces RORγt expression in the colon

Specific transcription factors of adaptive immune response were
evaluated to verify the intestinal immune response pattern. A lower
expression of RORγt transcription factor was detected in the colon of
animals fed the PBY diet compared to the control diet group (p < 0,05)
(Fig. 7). There was no significant difference in FOXP3, GATA-3, and T-
bet transcription factors in the colon of the mice.

4. Discussion

Yacon has been associated with intestinal microbiota modulation
due to its high soluble fiber content, FOS, and inulin. The benefits are
related to the increment of Bifidobacterium and Lactobacillus, and bac-
terial metabolites, such as SCFA (Caetano et al., 2016). Furthermore,
yacon consumption has been demonstrated to attenuate colon cancer in
experimental models (de Moura et al., 2012; Grancieri et al., 2017).
Although the immunomodulatory role of yacon is suspected to favor
increased secretory fecal IgA production (Grancieri et al., 2016), in-
flammatory cytokine reduction (Choque Delgado et al., 2012), in-
creased phagocytic activity of macrophages (Paredes et al., 2018), as
well as possibly decreasing the number of pathogenic bacteria in colon
(Sant’Anna et al., 2018), its immune response profile in the intestine is
still unknown.
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In our study, the diet supplemented with PBY, containing soluble
fibers, increased fecal humidity and viscosity, without altering fecal pH.
It is known that bacterial fermentation favors the reduction of fecal pH,
leading to water retention in the intestinal lumen in order to preserve
intraluminal osmotic pressure (Le Blay, Michel, Blottière, & Cherbut,
1999). Furthermore, the osmotic effect provided by the fructans in-
creases the absorption of Ca and Mg due to the optimization of para-
cellular transport. This transport is favored by increased solubilization
of minerals attributed to high amount of fluid in the colon (Bongers &
Van den Heuvel, 2003; Lobo et al., 2007). However, we did not observe
any reduction in fecal pH, this is probably related to the reabsorption of
fatty-acids along the colon, resulting in less acidic feces.

FOS and inulin are initially fermented in the cecum (Roberfroid,
2007), leading to the production of bacterial metabolites, which sti-
mulate cell proliferation. Among these metabolites, butyrate is high-
lighted, which is the main source of energy for the colonocytes, helping
in the maintenance and integrity of the mucosa (Le Blay et al., 1999).
The trophic effect in the mucosa, reflects an increase in the weight and
length of the intestinal tissue. An increase in the weight of the cecum,
colon and small intestine, and the length of the colon was verified in
our study, suggesting a potent trophic action caused by the PBY diet,
which may be linked to the higher production of fecal SCFA, also ob-
served in our results.

Regarding serum biomarkers, there were no alterations in the levels
of GGT, AST, ALT, creatinine, FA, or total cholesterol between the
groups. However, higher concentration of TG in the PBY diet group was
found. This increase may be attributed to free fructose present in the
PBY diet. The increase of TG, total lipids, and low-density lipoproteins

in the blood may occur after the consumption of diets with fructose
when compared to diets with complex carbohydrates and other sugars
since greater activity of lipogenic enzymes in the liver can increase the
synthesis of glycerol and fatty-acids in the same (Barreiros, Bossolan, &
Trindade, 2005). It is possible that the amounts of fructose ingested by
the animals in the PBY group may have deviated their metabolism for
lipid synthesis.

The reduction of serum urea in the PBY diet group may be related to
the reduced ingestion of proteins, as this group presented a significant
reduction in dietary intake. Moreover, fiber in the PBY diet might favor
the lower absorption of proteins due to increased intestinal transit. This
fact may be confirmed by the feces consistency of the animals fed the
PBY diet, classified as viscous - watery feces.

PBY diet also induced an increase in the concentration of acetic,
propionic, butyric, isovaleric, valeric, and caproic fatty-acids in the
feces of the animals in the PBY diet group. This increase in SCFA may be
attributed to the prebiotic role of PBY, capable of stimulating
Lactobacillus and Bifidobacterium growth, and consequently generating
these acids as end products of fermentation. According to the literature,
the SCFA produced in the largest quantity by the fecal microbiota is
acetic acid, followed by propionate, and butyrate (Cummings, Pomare,
Branch, Naylor, & Macfarlane, 1987). However, in the present study
this trend was only relevant in the feces of animals fed the control diet,
while in the PBY diet group, a higher production of butyric acid, fol-
lowed by acetic, and propionic acid, was verified respectively. Carbo-
hydrates which are not absorbed in the small intestine can be used by
the intestinal microbiota to generate acetate, being the main route by
which the body obtains energy from undigested carbohydrates
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Fig. 4. Effect of PBY diet on serum biomarkers level in BALB/c mice during 8weeks of dietary supplementation. (A) total cholesterol (mg/dl); (B) triglycerides (mg/
dl); (C) GGT (gamma-glutamyl transferase) (u/L); (D) AST (aspartate aminotransferase) (u/L); (E) ALT (alanine aminotransferase) (mg/dl); (F) albumin; (G) crea-
tinine; (H) urea; (I) alkaline phosphatase. The data are expressed as mean ± SEM (n=10 mice/group). Statistical difference between groups were analyzed by the
unpaired Student's t-test or Mann Whitney, (*) p < 0.05, (**) p < 0.001. CC, control diet; CY, PBY diet.
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(Salminen et al., 1998). Almost all the heterotrophic anaerobic eu-
bacteria in the intestine can produce acetate (Flint, 2006). However,
butyrate is considered the most significant SCFA in relation to human
health, because it may promote a trophic action in the mucosa, and an
apoptotic action in cancer cells (Williams, Coxhead, & Mathers, 2003),
promoting the reduction of pre-neoplastic lesions. Caproic acid is also
capable of reducing the viability of in vitro HCT-116 cancer cells to up
to 80% (Narayanan, Baskaran, Amalaradjou, & Venkitanarayanan,
2015).

Branched-chain fatty acids (BCFA), such as isobutyrate and iso-
valerate acids are formed through the fermentation of amino acids,
valine and leucine, respectively (Macfarlane & Gibson, 1995). It is
worth mentioning that protein fermentation is greater than carbohy-
drate fermentation in the descending colon, due to the availability of
substrate, and increased pH. Therefore, the quantity of BCFA in the
descending colon is higher than that of SCFA (Cummings et al., 1987).
As observed in our study, PBY diet consumption promoted a significant
increase of isovaleric acid, but not significant for isobutyric acid. This
fact may be attributed to the possible increase of proteins and amino
acids in the colon, which were not absorbed in the small intestine.

Furthermore, SCFA have been demonstrated to influence satiety,
due to their interference in the production of leptin, a hormone released
by the white adipose tissue, whose signaling pathway defects are as-
sociated with severe obesity, hyperphagia, infertility, and immune
system disorders (Hoyles & Wallace, 2010). Studies using mice showed
that SCFA (C2 – C6), and BCFA (C4 – C6) act in the production of leptin

in the adipocytes through the G protein-coupled receptor GPR41,
shown to be the agonists of this receptor (Xiong et al., 2004). Thus, the
consumption of the PBY diet may be directly related to the increased
production of SCFA (acetic (C2), propionic (C3), butyric (C4), iso-
valeric, and valeric (C5)), which might modulate the production of
leptin in the animals.

In this study, a significant increase in the percentage of Treg cells in
the colon of animals fed the PBY diet was found, as well as a reduction
in RORγt expression. Treg cells produce IL-10 as a mechanism to
modulate immune response, which promotes inflammatory response
control, inhibiting hyperactivation of cells that could cause tissue da-
mage (Laidlaw et al., 2015; Zhu & Paul, 2009). Furthermore, modula-
tion of the immune response by the Treg cells indicates that there are no
stimuli for Th17 cells differentiation (Korn, Bettelli, Oukka, & Kuchroo,
2009), as verified in our study. During the early stages of TCD4+ cells
differentiation there is the expression of both RORγt and FOXP3
(Ichiyama et al., 2008). However, Treg or Th17 cells differentiation are
affected by the amounts of TGF-β and pro-inflammatory cytokine
milieu, on one hand, high IL-6 and TGF-β promote RORγt expression,
and on the other hand, low pro-inflammatory cytokines and high TGF-
β, induce FOXP3 expression (Zhu & Paul, 2009). Therefore, an anti-
inflammatory environment promotes an immune response appropriate
for Treg cells differentiation.

In the present study, RORγt reduction might explain the lack of al-
teration in the Th17 cells. Despite the increase of Treg cells in the PBY
diet group, we did not verify an increase in the FOXP3 transcription

Fig. 5. Effect of PBY diet on fecal SCFA concentration in BALB/c mice during 8 weeks of dietary supplementation. (A) formic acid (µmol); (B) acetic acid (µmol); (C)
propionic acid (µmol); (D) isobutyric acid (µmol); (E) butyric acid (µmol); (F) isovaleric acid (µmol); (G) valeric acid (µmol); (H) isocaproic acid (µmol); (I) caproic
acid (µmol). The data are expressed as mean ± SEM (n=4 to 10 mice/group). Statistical difference between groups were analyzed by the unpaired Student's t-test
or Mann Whitney, (*) p < 0.05, (**) p < 0.001. CC, control diet; CY, PBY diet.
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factor. Furthermore, there were no changes in T-bet and GATA-3 ex-
pression, which suggest a local immune balance. Therefore, we propose
a possible mechanism underlying the health benefits of PBY. PBY, a
prebiotic source of FOS and inulin, increases the proliferation of pro-
biotic bacteria which enhances SCFA production through fermentation.
These SCFA might modulate transcription factors responsible for
adaptive immune responses in the colon, downregulating RORγt and,
therefore, reducing the stimuli required for Th17 cell differentiation,
which favors Treg cell induction. Higher Treg cells conduce to reduced
activation of pro-inflammatory cells, and consequent formation of an
anti-inflammatory microenvironment. Thus, PBY supposingly prevents
and attenuates inflammatory processes by increasing SCFA concentra-
tion, negatively modulating RORγt and increasing Treg cells in the
colon.

5. Conclusion

PBY diet reduced food intake in the animals, suggesting its im-
portant and beneficial role in satiety due to soluble fiber content and
SCFA production, which possibly interfere with leptin production. PBY
diet also increased fecal humidity and viscosity, favoring intestinal
transit. Furthermore, the observed increase in Treg cells and reduction
in RORγt transcription factor, indicate that PBY is beneficial for the

modulation of inflammatory processes and immune cells. Therefore, the
consumption of a diet containing PBY may favor the regulation of sa-
tiety, improve intestinal transit, maintain the integrity of the intestinal
tissues, and increase Treg cells differentiation by downregulating RORγt
expression which consequently reduces inflammatory processes.
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control diet; CY, PBY diet.
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