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Abstract

Common beansPpaseolus vulgaris L.) protein hydrolysate is a source of
bioactive peptides with known health benefits. @ of this study was to evaluate the
effect of common bean protein hydrolysate on lipigetabolism and endothelial
function in male adult BALB/c mice fed an atherogediet for nine weeks. Male adult
mice were divided into three experimental groups () and fed with normal control
diet; atherogenic diet and atherogenic diet add#ld bean protein hydrolysate (700
mg/kg/day) for nine weeks. Food intake, weight géijpid profile, Atherogenic Index
of Plasma, inflammation biomarkers and endothdlimiction were evaluated. APH
group presented reduced feed intake, weight gigial, profile, tumor necrosis factar;
angiotensin 1l (94% and 79%, respectively) and eased endothelial nitric oxide
synthase (62%). Protein hydrolysate showed hypesheiolemic activity preventing
inflammation and dysfunction of vascular endothmljuin addition to decreasing

oxidative stress, indicating an adjuvant effectestucing atherogenic risk.

Keywords: Common bean; bioactive peptides; antioxidant aagaendothelial

dysfunction; angiotensin Il; e-NOS.
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1. Introduction

The excess of saturated fat, cholesterol andrsugathe diet affects lipid
metabolism, stimulates oxidation of low-densityolgpoteins (LDL) and leads to the
development of cardiometabolic diseases [1], beasgonsible for 17.9 million deaths
worldwide in 2016 [2].

Atherogenic diets promote a pro-inflammatory eomwment, increasing the
concentration of oxidized LDL in the inner layer l@bod vessels and contributing to
the development of lesions in vascular endotheliucharacterizing the first
physiological manifestation of atherosclerosis. réased endothelial permeability
allows the migration of LDL molecules to the tunis@gima, where oxidation and
phagocytosis of those molecules activate the imnayséem and induce the release of
tumor necrosis factar (TNFa), an early marker of endothelial activation [3].

Common beanRhaseolus vulgaris L.) is a widely consumed legume in Brazil
and other countries [4]. Its protein hydrolysates hdemonstratedin vitro
antihyperlipidemic, anti-inflammatory and antihyjgrsive properties [5,6], being
related to the sequences of antioxidant bioactemiges and blood pressure regulators.
Some of these peptides are able to block the acdfi@angiotensin-converting enzyme
(ACE), preventing the conversion of angiotensin ol @ngiotensin Il, a potent
vasoconstrictor. Other studies suggest that ACibitibn may stimulate the expression
of endothelial nitric oxide synthase (e-NOS) enzymereasing synthesis and release of
nitric oxide in vascular endothelium and promotuagodilation and reduction of blood
pressure [7,8]. In addition, nitric oxide can regal coronary blood flow and protect
endothelial layer from cell adhesion and platetgjragation.

In this regard, some studies evaluated the effefcsgveral protein hydrolysates
in vivo in spontaneously hypertensive rats (SHR). Evalunatif chicken skin protein

hydrolysate (100 mg/kg), mung bean protein hydatly§600 mg/kg) and rice protein
3
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hydrolysate (600 mg/kg) in SHR rats showed a redngh blood pressure [9-11]. This
effect has been attributed to the ability of pegdidko inhibit ACE. In addition,
administration of a black bean protein hydrolysate hyperglycemic rats
(hyperglycemic rat model) at a concentration of 200/kg showed a hypoglycemic
effect [12].

Despite the available knowledge about the effédtean protein hydrolysate on
ACE inhibition and blood pressure reduction, theehamism regulating the pathway of
atherosclerosis is not well understood. Thus, dhe of bioactive peptides on protecting
the endothelial barrier and preventing the deleterieffects of an atherogenic diet
needs to be investigated.

Therefore, the aim of this study was to evaludte tole of bean protein
hydrolysate on endothelial dysfunction and its iotpan prevention of atherosclerosis

in BALB/c mice fed an atherogenic diet.

2. Materialsand Methods
2.1. Sample material

Common beanRhaseolus wvulgaris L.), cultivar BRSMG Madreperola, was
cultivated and harvested by EMBRAPA Rice and Began(o Antdnio de Goias, GO,
Brazil). The fresh beans were cooked under presduPebeans/water) for 50 min at
120 °C. After soaking, boiled beans were oven-dfted h at 60 °C and then crushed
(sieve of 60Qum aperture size, 30 mesh; Grinder Vertical Rotor 88 CFT, Marconi
Equipment, Brazil). The protein hydrolysate (PH)swabtained by a simulated
gastrointestinal digestion process according toeélet al. [5] using pepsin and
pancreatin [13]. Peptides were previously iderdifand characterized by Alves al.
[6] using size exclusion chromatography and higHgemance liquid chromatography-

electrospray-ionization-mass spectrometry (HPLC—HS). In the aforementioned
4
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study, the bioactive peptide sequences were coadirosing UniProt database from
BLAST® tool (http://www.blast.ncbi.nim.nih.gov/Blaegi), and potential biological
activity of peptides was predicted by using BIOPERlatabase
(http://www.uwm.edu.pl/biochemia). The protein hylysate were packed under

vacuum and kept at -20 °C until analysis.

2.2. Phenolic Compounds

Extract from bean protein hydrolysate was obtaiaedording to Bloor [14].
Total phenolic compounds were determined using nFBlocalteau reagent [15].
Results were quantified using a standard curveimgrfgom 0 to 250 ppm of gallic acid
and expressed in milligrams of gallic acid equinédeper gram of dry sample (mg GAE

g?) (standard curve: y = 0.0009x + 0.0046:=R0.9975).

2.3. Animals and diets

Male adult BALB/c mice Nlus musculus, class Rodentia) were obtained from
the Central Animal Facility of the Center for Liféciences and Health at Federal
University of Vigosa (Vicosa, MG, Brazil). This meldcan be used to evaluate the
earliest stages of atherogenesis [16,17]. At 6@ ddyage, 36 male mice were randomly
allocated into three groups (n= 12 each). The asimere allocated in individual
stainless-steel cages under controlled temperatwgonment (22 + 2 °C) and a 12 h
photoperiod. Experimental diets were based on ABNiSstandard diet for rodents
(Table 1) [18]. The groups received deionized wated the respective experimental
diets weekly an@d libitum for nine weeks.

Experimental groups received the following dietermal control diet (NC);
atherogenic diet (AD) and atherogenic diet addeti iean protein hydrolysate (APH).

The atherogenic diet were based on AIN-93M [18] argh fat high cholesterol diet
5
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[19,20]. The bean protein hydrolysate (700 mg/kg)daas formulated according to
Mojica et al. [12] We know that the bean protein hydrolysate &gield of 51.2 % from
the whole bean flour [5], thus, considering theedos 700 mg per kg of body weight,
we can assuming that a 70 kg individual would hiaveonsume about 95.7 g of beans.
The 6-propyl-2-thiouracil (PTU) (10 mg/kg/day) wased according to Panda and Kar
[21] and Panda et al. [22] PTU is a thyreostatierghat inhibits thyroperoxidase
enzyme, acts in thyroid hormone synthesis, anceasgs weight gain, total cholesterol,
LDL-c and triglycerides [23]. The diet and PTU wenéragastrically administered by
oral gavage. All experimental procedures using alsrnwvere performed in accordance
with the ethical principles for animal experimergat and the study protocol was
approved by the Ethics Committee of the Federaléisity of Vigcosa (Protocol No.
97/2015).

Body weight and feed intake were monitored weeRlgiposity was measured
by Lee index, calculated by the ratio between thieecroot of body weight (g) and
naso-anal length (cm) x 1000 [24]. The food efficie ratio (FER) was calculated by
the ratio between weight gain (g) and food intage On the 63th day, after 12 h
fasting, animals were anesthetized with isofluréiseforine®, Cristalia, Brazil) and
euthanized by cardiac puncture. Blood was colledredBD Vacutaine? tubes,
centrifuged at 1,006 for 10 minutes for serum separation and then dtwrenicrotubes
at -80 °C. Cardiac tissue was collected, immedjdtelzen in liquid nitrogen and stored

at -80 °C for analysis.

2.4. Biochemical analysis
An aliquot of 0.5 mL of serum from each animal wesed for biochemical
analysis. Total cholesterol, high-density lipopnoteholesterol (HDL), low-density

lipoprotein cholesterol (LDL) and triacylglyceridé3GL) levels were measured by
6



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

colorimetric method, using commercially availablts laccording to the manufacturer's
instructions (Bioclin, Brazil). Analyses were pearfied on a BS-200 Chemistry
Analyzer (Bioclin, Brazil). The Atherogenic Index Blasma (AIP) was determined by

the following equation: log (triacylglyceride/HDlholesterol) [25].

2.5. Lipid peroxidation and oxidative stress levels
2.5.1. Antioxidant capacity

Aliquots (10 pL) of serum were added to plate wells with 20 of
metmyoglobin reagent and 15%Q of 2,2'-azinobis [3-ethylbenzothiazoline-6-sulion
acid]-diammonium salt (ABTS) solution. Then, 0 of increasing concentrations of
trolox standard (1.5 mM) were pipetted into thelsyah triplicate, to obtain a standard
curve. The plate was incubated at room temperdtur® min, and then absorbance
(405 nm) was read with a spectrophotometer (Muiis&O, Thermo Fisher Scientific,

USA). Results are expressed as mmol of trolox edents per liter of serum.

2.5.2. Malondialdehyde

Malondialdehyde (MDA) in serum was determined byolarbituric acid
reactive substances (TBARS) method [26,27]. MDA wadculated using molar
absorptivity coefficient (EO = 1.56 x 10M™*cm-') [28]. Results are expressed as

umol/L of serum.

2.6. Nitric oxide

Nitric oxide analysis was performed by mixing 80 of serum with solution A
(1% sulfanilamide in 2.5% #P0,) and B (0.1% naphthyl | ethylene diamide
dihydrochloride in 2.5% EPQOy) in a 1:1 ratio in a microtiter plate; then inctdghunder

dark condition for 10 min. Absorbance was read gisirspectrophotometer (Multiskan
7
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GO, Thermo Fisher Scientific, USA) at 570 nm. Resalre expressed as pmol/L of

serum [29].

2.7. Angiotensin I quantification

Serum angiotensin Il was quantified Aggiotensin Il EIA Kit (Sigma-Aldrich,
USA). Absorbance was read using a spectrophotor{iigtiskan GO, Thermo Fisher
Scientific, USA) at 450 nm and quantification cadriout using a standard curve with

SigmaPlo?, a Systat Software. Results are expresseg/msL of serum.

2.8. Extraction of mRNA from cardiac tissue and cDNA synthesis

One hundred mg of cardiac tissue were ground ulegletemperature condition
and homogenized under RNAse-free conditions. T&HIA was extracted with a
TRIzol reagent (Invitrogen, USA) following the mdacturer’'s instructions. A 2ig
portion of mMRNA extracted was used to synthesiz&l&Dusing a M-MLV reverse

transcription kit (Invitrogen, USA) according tcetmanufacturer’s protocol [30].

2.9. Determination of gene expression of proteins involved with endothelial function by
rever se transcriptase quantitative polymerase chain reaction (RT-gPCR)

The mMRNA expression levels from cardiac tissue ginst involved in
endothelial function were analyzed by using RT-gPTRe SYBR Green PCR Master
Mix (Applied Biosystems, USA) was used and analyses performed on StepOne™
Real-Time PCR System (Thermo Fisher Scientific, Y3&ing the measurement
system by SYBR-Green Fluorescence and Primer Exprestware (Applied
Biosystems, USA). The RT-gPCR involved a singléiahidenaturation cycle at 95 °C
(20 sec), 40 denaturation cycles at 95 °C (3 sexeadh), then an annealing cycle at 60

°C (30 seconds), followed by a standard dissogiatiarve. Sense and antisense primer
8



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

sequences (Integrated DNA Technologies, USA) weesl uo amplify tumor necrosis
factora (TNFa); angiotensin Il; endothelial nitric oxide syntegg-NOS); vascular cell
adhesion molecule 1 (VCAM-1) and matrix metallopmase 9 (MMP-9). The relative
expression levels of mMRNA were normalized by endoge control glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (Supplementary eTdhl All steps were

performed under open conditions with RNase.

2.10. Satistical analysis

Data were initially submitted to a Kolmogorov-Snavnnormality test and then
ANOVA test was applied, followed by the Newman-Ketdst for parametric variables.
Experimental treatments were arranged in a conmplea@domized design with twelve
repetitions. The significance level was establisf@dall tests at 5%. All statistical
analyzes of biological data were performed usingapBPad Prisfh (GraphPad

Software, USA), version 5.0.

3. Results
3.1. Identification of bioactive peptides and determination of phenolic compounds
content in bean protein hydrolysate

Bioactive sequences from bean protein hydrolysaee mainly related to the
inhibition of angiotensin converting enzyme (ACHipeptidyl peptidase IV (DPP-IV),
stimulating glucose uptake (GUSP) and antioxidatiaetivity (Table 2). The
concentration of phenolic compounds found in baatem hydrolysate was 1.06 £ 0.17

mg GAE per gram of sample.

3.2. Indicators of food consumption, body weight and adiposity in adult BALB/c mice
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The consumption of atherogenic diet added with m@@kg of body weight per
day of bean protein hydrolysate (APH group) presgésome variation during the nine
weeks, with a decrease in the week one, two, thneesix (p < 0.05) and no change in
the week four, five, seven, eight and nine (p 5Pd&s compared to the atherogenic diet
group (AD) (Fig. 1A). The daily consumption and tieéal consumption in APH group
was lower (p < 0.05) than in control groups (Ta®)leThe average consumption of total
phenolic compounds was 0.028 + 0.002 mg GAE perahalybean protein hydrolysate
was 26.69 £ 1.73 mg per day (700 mg/Kg body weigrhien, the APH group reduced
the weight gain (p < 0.05), becoming similar to tit@mal control group (NC) (Fig.
1B). In addition, the Lee index was lower in APHbgp compared to AD group (p <
0.05) (Table 3). The ratio between weight gain &outl intake (food efficiency ratio)

did not differ (p > 0.05) among groups.

3.3. Lipid profile and Atherogenic Index of Plasma in adult BALB/c mice

The APH group showed a reduction in total cholestiewels, triglycerides and
HDL-c levels (p < 0.05) and no changes in LDL-cdisvand Atherogenic Index of
Plasma (AIP) (p > 0.05) when compared to AD grotigb{e 3). The consumption of
bean protein hydrolysate associated with atheragéiet did not prevent the decrease

of HDL cholesterol compared to control groups.

3.4. Lipid peroxidation and oxidative stress levels in adult BALB/c mice

The total antioxidant capacity (TAC) did not diffp > 0.05) between APH
group and control groups (NC and AD) (Fig. 1C)cémparison to lipid peroxidation, it
was observed that APH group showed reduced MDAIde{ge < 0.05) than control

groups (Fig. 1D).
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3.5. Effects of bean protein hydrolysate consumption on inflammation and endothelial
dysfunction in adult BALB/c mice

The APH group showed reduced expression of d §éne (94%) compared to
AD group (p < 0.05) (Fig. 2A). The angiotensindh@ 1) gene expression and protein
concentration in APH group was lower (79% and 508pectively) than AD group (p
< 0.05) (Fig. 2B and 2C). The endothelial nitriadexsynthase (e-NOS) expression and
the nitric oxide serum concentration increased iRHAgroup (62% and 57%,

respectively) compared to AD group (p < 0.05) (RD.and 2E).

4. Discussion

The present study evaluated the protective eftdctommon bean protein
hydrolysate on the vascular endothelium of BALB/@enfed an atherogenic diet.
Common beans and their protein hydrolysate werardegl as source of phenolic
compounds and bioactive peptides with antihypetémic, anti-inflammatory and
antihypertensive effects [5,6,31,32].

In this study, the APH group received 700 mg/kdpady weight per day of bean
protein hydrolysate by intragastric gavage assediatith an atherogenic diet, since
proteins have good stability in diet. The beangrohydrolysate used in this study was
a source of phytochemicals and its characterizagiemtified antioxidative peptides
(VELVGPK), related to inhibition of dipeptidyl pagase IV (DPP-IV) (LVTTTVDL;
QTSTPLFS; TRGVLV), and inhibition of angiotensin u@rting enzyme (ACE)
(QTSTPLFS; VELVGPK; TRGVLV).

The biological activity of bean protein hydrolysateem parental proteins
(phytohemagglutinin, alpha and beta phaseolin, aagghylase inhibitor 1 and alpha-
amylase inhibitor 2), associated with the preseoic@henolic compounds possibly

stimulated the release of cholecystokinin, a gag®stinal hormone that regulates
11
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311

serotonin secretion and increases satiety. In iaddithe mechanism of food intake
control may be related to inhibition of enzyme DRPby peptides, which may
maintain the physiological release of Glucagon-Likeptide 1 (GLP-1), the
gastrointestinal hormone responsible for slowingtg@a emptying and increasing
insulin secretion [12,31,33]. Thus, the mechanisimaction of protein hydrolysate
possibly consists in modulation of hunger and #teety center in hypothalamus.

The APH group did not prevent the decrease of Hbalesterol compared to
control groups and it is commonly observed in amsmaith this dietary pattern
[25,34,35]. However the APH group presented lowBiLHholesterol than AD and NC
groups. Although it was not expected, some stuidée® been observed similar results
[36,37].

The improvement in total cholesterol and triacytgiride (TGL) profile may be
linked to the hypolipidemic and antioxidant propestof phytochemicals and peptides
present in bean protein hydrolysate, which reduoe micellar solubilization of
cholesterol probably by hydrophobic interaction -fB9. The Atherogenic Index of
Plasma (AIP) was higher in the NC group comparetthéoother groups, since the TGL
concentration was also higher in this group. HighLThas been related with a increased
LDL cholesterol and cardiovascular risk [42]. NQugp received the standard diet for
adult rodents (AIN-93M) [18] containing 76% of cahydrates and the groups that
received atherogenic diet consumed about 45% bdiobgdrates and had a lower TGL
and AIP concentration.

MDA concentration in APH group was lower than i Aroup, indicating that
treatment could attenuate oxidative stress. It acpossibly due to the action of bean
protein hydrolysate, phytochemicals and bioactieptiges with antioxidant and anti-
inflammatory action, which may neutralize free cads and prevent lipid peroxidation

caused by the atherogenic diet [5,6,43,44]. Tha tottioxidant capacity (TAC) in APH
12
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group serum was similar to the AD group. This may ditributed to the short
experimental time, as the TAC is dependent on e tof treatment provided,
intervention time and concentration of antioxidaompounds present in the diet [45].
We evaluated the effects of the bean protein hydaté on prevention of endothelial
dysfunction and the lowest MDA levels can indicateeduction in oxidative stress.
Bean protein hydrolysate in APH group prevented thcrease of TNfe-
expression and possibly modulated vascular perniyadnd migration of LDL to the
subendothelial space. This mechanism of endothet@ection may be related to the
action of phytochemicals and antioxidant peptidebjch possibly minimized the
exposure of LDL to transition metal ions, enzymed ather catalysts, preventing their
oxidation and the activation of inflammatory case§6]. In addition, the APH group
reduced angiotensin Il (ang IlI) expression and reeconcentration and increased e-
NOS expression in comparison to AD group. This rae@m of endothelial control
observed even with the administration of atherogemt was possibly triggered by the
anti-inflammatory and antioxidant action of beaotpm hydrolysate, attributed to the
presence of VELVGPK bioactive sequence, and torobi@active sequences with a
high potential of ACE inhibition (LVTTTVDL; QTSTPLS; VELVGPK; TRGVLYV).
These sequences were identified and well charaeterby Alveset al.5
according to respective biochemical properties laintbgical potential. The biological
potential of these sequences to inhibit ACE has lpreviously identified and can be
found at BIOPEB, a database that contains information about tlmdtivity of
peptides and supports analyses of proteins as ttprecursors of bioactive peptides
[47]. Most of the effects of ACE-inhibitor peptidé®m common bean proteins are
demonstratedn vitro, mainly by enzymatic/biochemical assays, demotistrathat
hydrolysis conditions, thermal treatments and hlydis time, can be useful to enhance

the ACE-inhibition properties by allowing enzymes perform the cleavage of
13
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denaturalized proteins efficiently [39]. In genesCE inhibitors are able to reduce the
activity of ACE, preventing the conversion of angqto ang Il (active form), thereby
promoting a vasorelaxant effect on blood vess&sAl. The lower expression of ang
Il in APH group highlights the great potential ocardiovascular control and protection
by bean protein hydrolysate, as ang Il is involwedoroduction of reactive oxygen
species by activation of NADPH oxidase and in réidncof nitric oxide bioavailability.
Nitric oxide has a role on development of chronigedses such as hypertension and
atherosclerosis [49,50].

The increase of e-NOS in APH group demonstrategptbtective mechanism of
bean protein hydrolysate on endothelium of aninfats with atherogenic diet. The
proposed regulatory mechanism suggests that ACikifildm may favor the expression
of e-NOS, which in turn stimulates the synthesid selease of nitric oxide in vascular
endothelium and contributes to vasodilatory acti@éi8]. Other authors also found
bioactive peptides inhibiting ACE in legumes andpmsed their action in regulatory
pathway of atherosclerosis [5,6,51,52], but withoutivo evidence.

Serum nitric oxide concentration was higher in Agtdup in comparison to AD
group, but lower than in NC group. Despite beinfyeg radical, nitric oxide acts as a
key regulator in cardiovascular control at physgidal concentration [53]. The
antihypertensive and antioxidant bioactive peptifdsean protein hydrolysate possibly
prevented damage to the vascular endothelium byukting the release of guanylate
cyclase enzyme, which synthesizes cyclic guanosmmophosphate (cGMP), a
calcium channel activator nucleotide present irculs endothelium that controls the
relaxation of smooth muscle and promotes vasodild63].

The vascular cell adhesion molecule-1 (VCAM-1) aridle matrix
metalloproteinase 9 (MMP-9) expression did notediffp > 0.05) among the groups,

possibly because they are atherogenesis late msarkeus, our study confirmed that
14
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nine weeks is not sufficient to observe differemceghese markers. We suggest that
bean protein hydrolysate modified the endotheliuenmgability and prevented the
development and progression of atherogenic lesemg, is probable that there was no
migration of cell adhesion molecules, smooth muselés, nor atherosclerotic plaque
formation [46].

Considering the experimental model used in thigdyst we proposed a
mechanism of action of common bean protein hydetg/sin the dysfunction of
vascular endothelium (Fig. 3). The bioactive peggtidnd phenolics compounds may act
on decreasing markers of inflammation, endothelyslfunction and may alter the lipid
metabolism that appear in the early stages of adfegiic process. The final markers of
atherogenic pathway showed no change. Thereforesuggest evaluating other types
of atherogenic diet, different doses of bean prmotaydrolysate and a longer

experimental period.

4. Conclusion

This work opens a new perspectiveinfvivo research on the effects of bean
protein hydrolysate on endothelial dysfunction @sdociates the specificity of bean
peptides with weight control, lipid metabolism awalscular homeostasis. The results
found in this investigation suggests that nutriiibsupplementation with bean protein
hydrolysate, as source of bioactive peptides, priekinflammation and dysfunction of

vascular endothelium, reducing the risk of deveigmardiovascular diseases.
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566 Table 1. Composition of experimental diets (g/kg of diet).

Ingredients (g/K Q) NC AD APH
Casein* 170.73 218.19 218.19
Dextrinized starch 155.00 105.50 105.50
Sucrose 100.00 300.00 300.00
Lard 0.00 200.00 200.00
Celulose 62.01 62.01 62.01
Soy oil 40.00 40.00 40.00
Mineral mix 35.00 35.00 35.00
Vitamin mix 10.00 10.00 10.00
Cholesterol 0.00 20.00 20.00
Choline bitartrate 2.50 2.50 2.50
L-cystine 1.80 1.80 1.80
Colic Acid 0.00 5.00 5.00
Corn starch 422.96 0.00 0.00
Carboydrate (%) 76.29 45.89 45.89
Protein (%) 19.21 24.69 24.69
Lypids (%) 4.50 29.42 29.42
Fiber (%) 6.2 6.2 6.2
Energy (kcal/kg) 3754.76 4834.76 4834.76
CD (kcal/gh) 3.75 4.83 4.83
Bean protein hydrolysate ] 200.00

(mg/Kg body weight )
567  *Purity of 82%. NC: normal control diet; AD: athgenic diet; APH: atherogenic diet added with bean
568 protein hydrolysate; CD: caloric density.
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Table 2. Bioactive peptides identified by HPLC-ESI-MS/MSBRSMG Madreperola

hydrolysate fractions.

Peptide Biological activity Parental protein

sequence*

LVTTTVDL GUSP, DPP-IV inhibitor Phytohemagglutinin

QTSTPLFS ACE inhibitor, DPP-IV Alpha-amylase inhibitor 1
inhibitor

VELVGPK ACE inhibitor, antioxidative, Alpha and beta phaseolin
DPP-IV, GUSP, PRSM, PEI

TRGVLV ACE inhibitor, DPP-IV Alpha-amylase inhibitor 2

Inhibitor, GUSP

GUSP: glucose uptake stimulating peptide; DPP-IKikitor: dipeptidyl peptidase IV inhibitor; ACE
inhibitor: angiotensin-converting-enzyme inhibitd?RSM: peptide regulating the stomach mucosal
membrane activity; PEI: prolyl endopeptidase inoibi * Peptides sequenced by HPLC-ESI-MS/MS
with intensity at least 50% and 70% of probabilByological activities were obtained from the BIOPE
database; Highlighted and underlined portion of geguence refer to part of the peptide with repglorte
antioxidant and anti-inflammatory activity, respeety (BIOPEP database). Only sequences of main
proteins ofPhaseolus vulgaris L. are presented in the table and were confirmet BLAST® tool (QC >

60 %). The amino acids are presented in one lettigrenclature.
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603 Table 3. Effect of bean protein hydrolysate intake on biameand biochemical
604  variables in adult BALB/c mice (n = 12) for nine &kes.
Groups NC AD APH
Total consumption (g) 334.39 + 3220 329.54 +40.48 291.77 + 30.96
Food consumption (g/day) 5.31 + 0°51 5.23 + 0.64 4.63 +0.49
Body weight gain (g) 8.29 + 1°7 12.08 + 1.62 730+1.8
Phenolic consumption
(mg GAE/day) P i i 0.028 + 0.002
FER (g) 0.03 + 0.0b 0.03 + 0.08 0.02 +0.00
Lee index 329.63+8.45 34500+ 14.8% 331.42+9.3%
TC (mg dLY) 124.17 +11.61  140.71+21.1% 11533 +17.1%
HDL (mg dL?) 68.00 + 4.08 55.00 + 7.00 47.00 + 9.00
LDL (mg dL™) 12.00 + 1.00 32.00 +9.08 34.00 + 4.08
TGL (mg dLY 45.89 + 7.88 25.20 + 4.82 18.66 + 5.66
AlP -0.18 + 0.06 -0.32 + 0.07 -0,40 +0.14

605 NC: normal control diet; AD: atherogenic diet; APHtherogenic diet added with bean protein
606 hydrolysate; FER: food efficiency ratio (weight géddod intake); GAE: gallic acid equivalent. TCtab
607 cholesterol; HDL: high-density lipoprotein choleste LDL: low-density lipoprotein cholesterol; TGL:
608 triacylglyceride; AIP: Atherogenic Index of Plasmag (TGL/ HDL cholesterol). Mean followed by
609 different letters in line differed by Newman-Keulsst (p < 0.05).* Total phenolic compounds
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concentration in protein hydrolysate: 1.06 + 0.1y ®AE/g of sample.
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Figure Caption

Figure 1. Effect of bean protein hydrolysate intake on f@mthsumption, weight gain
and oxidative stress in adult BALB/c mice (n = 1@) nine weeks. A: weekly food
consumption; B: weekly weight gain. C: total antdant capacity (TAC); D:

malondialdehyde (MDA). NC: normal control diet; Alatherogenic diet; APH:
atherogenic diet added with bean protein hydrog/gdiean followed by different letters
in column and the symbol [*] differed by Newman-Ktest (p < 0.05).

Figure 2. Effect of bean protein hydrolysate intake on ehdb&l dysfunction in
BALB/c adult mice (n = 8) for nine week#&: tumor necrosis factos (TNFa) in
cardiac tissue; B: angiotensin Il in cardiac tissGe angiotensin Il quantification in
serum; D: endothelial nitric oxide synthase (e-N@Sardiac tissue; E: nitric oxide in
serum. NC: normal control diet; AD: atherogenictdi®PH: atherogenic diet added
with bean protein hydrolysate. Mean followed byfefiént letters differed by Newman-
Keuls test (p < 0.05).

Figure 3. Potential mechanism of action of bioactive peidad phenolic compounds
from common bean protein hydrolysate in the dysfioncof vascular endothelium. Red
arrows and lines indicate in which steps commoml@atein hydrolysate modulated
the pathway in this study. Ang Il: angiotensin AT 1: angiotensin Il receptor type 1
TNF-o: tumor necrosis factar: TNFR: tumor necrosis factor receptdtDL: low-
density lipoprotein; oxLDL: oxidized LDL; NkB: factor nuclear kappa B/CAM-1:
vascular cell adhesion molecule-1, ICAM-1: intr&delr adhesion molecule-1; e-NOS:
endothelial nitric oxide synthase; NO: nitric oxid&he images were from
smart.servier.com.
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HIGHLIGHTS

Bean protein hydrolysate (BPH) modulated feed intake and weight gain in
BALB/c mice

BPH modulated lipid profilein BALB/c mice
Inflammation induced by atherogenic diet was reduced by BPH in BALB/c mice
BPH reduced angiotensin 11 and increased e-NOS expression in BALB/c mice

BPH improves the permeability and protects the vascular endothelium in
BALB/c mice



