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Abstract  

Obesity is a serious global health problem that is directly related to various morbidities 

manifestation. Intestinal dysbiosis has been implicated on obesity pathogenesis. Diet 

composition can alter gut microbiota, regardless of energy intake. Dietary fatty acids quality 

may affect gut microbiota composition, which in turn may affect host metabolic health. The 

mechanisms by which the different type of FFA modulate gut microbiota is yet poor elucidate 

and there is a lack of studies regard to this. Fatty acids may act in cell membrane, interfere with 

energy production, inhibit enzymatic activities, impair nutrient absorption and generate toxic 

compounds to cells, leading to growth inhibition or even bacterial death. The beneficial effect of 

the consumption of n-3 polyunsaturated fatty acids (PUFA) and conjugated linoleic acid (CLA) 

on microbiota, unlike n-6 PUFA and saturated fatty acids has been suggested. n-3 PUFA 

consumption promotes desirable changes on obese intestinal microbiota making it similar to that 

of normal weight individuals. More studies are needed to better understand the effect of CLA on 

microbiota and host health. Long term human controlled clinical trials must be conducted to 

allow us to understand the complex interaction between dietary fat, intestinal microbiota and 

obesity. 

https://crossmark.crossref.org/dialog/?doi=10.1080/10408398.2018.1481821&domain=pdf
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Introduction 
Obesity is a serious global health problem, which is directly related to the manifestation 

of many morbidities due to mechanisms that involve subclinical inflammation, considered a link 

between obesity and associated disease (Gomes, Costa, and Alfenas 2015; Swinburn et al. 

2011). Intestinal dysbiosis plays a role on obesity pathogenesis by mechanisms that involve, in 

part, its action on systemic inflammation. Therefore, gut microbiota modulation may be a 

potential target for obesity therapeutic interventions (Tagliabue and Elli 2013). 

Modulation of gut microbiota through the use of antibiotics, prebiotics, probiotics, 

besides microbiota transplantation are some of the emerging obesity therapies (O‟Flaherty et al. 

2010; West et al. 2015). However, the high cost, difficulty of maintaining a desirable microbiota 

in long term basis and the possible health risks affect the applicability of these strategies. Diet, 

on the other hand, is one of the main determinants of obesity, and may be an accessible target 

for dysbiosis therapeutic interventions (Cotillard et al. 2013). 

Dietary fat is the food component that has the highest antimicrobial action (Desbois and 

Smith 2010), which is also able to modulate systemic inflammation (Angelakis et al. 2012). Its 

efficacy to increase the shelf life of food products (Lucera et al. 2012), its use on oral hygiene 

products (Shino et al. 2016) or for topical infections treatments (Verallo-Rowell, Dillague, and 

Syah-Tjundawan 2008) have been demonstrated. However, the antimicrobial activity and 

potential use of dietary fat to control obesity dysbiosis through gut microbiota modulation has 

been neglected. In the past it was once believed that the small amounts of free fatty acid (FFA) 

that reached the colon was not enough to affect intestinal microbiota (Salonen and de Vos 

2014). However, recent findings indicate that 7% of dietary fat reach the colon in FFA form, 

even after the consumption of normofat diets by healthy people (Gabert et al. 2011). The 

influence of dietary fat on gut microbiota has been confirmed by an increasing number of 

scientific evidences (Chaplin et al. 2015; David et al. 2014; Devkota et al. 2012; Fava et al. 
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2013; Mujico et al. 2013; Wu et al. 2011). Nevertheless, the mechanisms by which the different 

type of FFA modulate gut microbiot is yet poor elucidate and there is a lack of studies regard to 

this. 

The undesirable effect of high fat diets on obesity microbiota modulation was recently 

confirmed in a robust study (E. A. Murphy, Velazquez, and Herbert 2015). Thus, the objective 

of this review is to critically evaluate the studies in which the role of different dietary fat types 

on obesity control through gut microbiota modulation, as well as to elucidate the possible 

mechanisms involved. 

 

Methodology 
 We searched the electronic Medline/PubMed, Science Direct, Scientific Electronic 

Library Online (SCIELO) and Latin American and Caribbean Health Sciences Literature 

(LILACS) databases to identify published studies related to the effects of dietary fat on obesity 

control through gut microbiota modulation. The following terms were used on the search: 

intestinal/gut microbiota/microbioma/microflora, dietary fat/fatty acids, obesity/overweight, 

antimicrobial/antibacterial activity/effect. The terms were used alone or in association and the 

selected languages were Portuguese, English and Spanish. Original articles and review have 

been selected according to the titles and abstracts and published in the last 10 years. Articles 

published before this period were included if justified by their scientific revelation. All articles 

were read and critically analyzed. 

 

Effects of dietary fat types on gut microbiota 
The gastrointestinal tract (GIT) microbiota composition differs along its length. While 

there is a small diversity and low abundance of microorganisms in the stomach, there is a wide 

variety and high number of microorganisms in the large intestine. Bile and pancreatic juice limit 

the number of bacteria present in the small intestine, ranging from ~ 104 / ml in the proximal 

region to ~ 106-108 / ml in the ileo-cecal region (Walter and Ley 2011). Aerobic and 
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aerotolerant anaerobic species are prevalent in the small intestine, while strict anaerobes 

predominate in the colon where there is low oxygen tension (Mowat and Agace 2014). 

The largest and most studied human microbial community resides in the colon and it is 

composed of approximately 1100 distinct species. More than 90% of the bacteria found in the 

human intestine belong to the Firmicutes phylum (including the genera Clostridium, 

Enterococcus, Lactobacillus and Ruminococcus), or to the phylum Bacteroidetes (including 

Bacteroides and Prevotella) (Power et al. 2014). In smaller proportions are the phyla 

Actinobacteria, Fusobacteria, Proteobacteria and Verrucomicrobia (Brahe, Astrup, and Larsen 

2013).  

The microbiota imbalance (dysbiosis) observed in obese favors the passage of 

endotoxins, such as lipopolysaccharide (LPS) derived from Gram-negative cell wall (Moreira 

and Alfenas 2012) from the intestinal lumen to systemic circulation (Yang and Rose 2014). 

Increased LPS in circulation results in metabolic endotoxemia and consequent low grade 

inflammation (Kaliannan et al. 2015). Although there is still no consensus on overweight 

individuals gut microbiota composition, most authors point out a decrease in phylum 

Bacteroidetes and increase of Firmicutes (Armougom et al. 2009; Ley et al. 2006). In addition, 

these people present gut microbiota lower diversity (Clarke et al. 2012).  

Many factors such as eating habits, environment and antibiotics use may affect gut 

microbiota composition (Chen et al. 2016). Gender, age and race also affect microbiota 

formation (Hullar and Fu 2014). Diet composition, regardless of the consumed calories (Cox 

and Blaser 2013) or fatty acid (FA) type, carbon chain size and the degree of saturation can also 

influence microbiota composition (Mujico et al. 2013), acting as a link between intestine and 

host metabolic health. However, it should be noted that FA only exert this function after being 

digested and released as FFA within the intestine (Brahe, Astrup, and Larsen 2013). Fat 

digestion begins in the mouth through the action of lingual and gastric lipases (Mu and Høy 

2004). However, pancreatic lipase is primarily responsible for dietary fat hydrolysis, releasing 

the FFA in the small intestine (Di Maio and Carrier 2011). 
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Animal studies evidences 

The consumption of high fat diet negatively affects the microbiota composition in 

animal models (Table 1). In general, saturated fat has been supplied as the fat source in  high-fat 

diet studies (Cani et al. 2008; Hildebrandt et al. 2009; E. F. Murphy et al. 2010; Parks et al. 

2013; Turnbaugh et al. 2008; Turnbaugh et al. 2009), although the purpose of these studies were 

not to evaluate the specific effect of this type of fat. 

The consumption of high-fat diet (high in saturated fat) by animal models for 3 to 25 

weeks, often used to induce obesity, reduces the population of the phylum Bacteroidetes and 

increases Firmicutes (Cani et al. 2008; Hildebrandt et al. 2009; E. F. Murphy et al. 2010; 

Turnbaugh et al. 2008; Turnbaugh et al. 2009). Regarding genera, the dynamics is still 

controversial, but saturated fatty acids (SFA) appear to decrease Bacteroides, Prevotella, 

Lactobacillus ssp. and Bifidobacterium spp. (Cani et al. 2008; E. F. Murphy et al. 2010; Zhang 

et al. 2010), making the microbiota profile similar to the one of overweight people and  animals. 

However, the consumption of diet supplemented with 0.5% of trans-10, cis-12 

conjugated linoleic acid (CLA-t10c12) for 8 weeks resulted in increased Bacteroidetes and 

decreased Firmicutes compared with the non-supplemented group. Microbial fermentation in 

the cecum was also enhanced, resulting in higher concentrations of the short chain fatty acids 

(SCFA) isobutyrate, acetate and propionate (Marques et al. 2015). These SCFA modulate host 

metabolism, promote intestinal health, cell differentiation, exerting anti-inflammatory effect 

(Macfarlane and Macfarlane 2012; Power et al. 2014). On the other hand, supplementation with 

CLA, although caused beneficial changes in the microbiota, it culminated in hepatic steatosis in 

the animals (Marques et al. 2015). Thus, more studies with CLA are necessary to know better 

its effects and adequate dosage. 

Animals CLA supplementation (6 mg/day, 50:50 cis-9, trans-11 and trans-10, cis-12 

active isomers) caused beneficial changes on microbiota by increasing bacteria population that 

may favor obesity control, from Bacteroidetes filo and Akkermansia muciniphilia (Chaplin et al. 

2015).  A. muciniphilia resides in the intestinal mucus layer, it is responsible for degrading 

mucin, and it is associated with a healthy mucosa. The number of these bacteria reduced in 
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obesity (Chaplin et al. 2015), besides being negatively correlated with body fat (Parks et al. 

2013). These changes verified after supplementation with CLA confirm its beneficial effect in 

the microbiota of animals (Chaplin et al. 2015). These results may be relevant in the 

development of strategies for managing body weight, once CLA has been used for body fat loss 

in humans (Gaullier et al. 2007). 

 Ghosh and contributors demonstrated that polyunsaturated fatty acids (PUFA) n-3 

protected rats from dysbiosis, reversing bacterial overgrowth caused by n-6 PUFA intake 

(Ghosh et al. 2013). Bacterial overgrowth is a condition characterized by an up-regulated 

growth of bacteria in small intestine and causes abdominal pain, swelling, besides of vitamins 

(such as a B12), fat and protein malabsorption. This condition is not only a quantitative change 

in gut microbiota, but dysbiosis is frequently presente (Ierardi et al. 2016). Futhermore, n-6 

PUFA consumption by laboratory animals resulted in Bacteroidetes and Firmicutes phyla 

depletion, increased BMI, and infiltration of inflammatory cells into ileum. In contrast, n-3 

PUFA turned teh infiltration occurrence similar to observed in response to control diet (Ghosh 

et al. 2013). It was also observed that in rats fed a high-fat diet, n-3 PUFA supplementation for 

19 weeks increased Lactobacillus abundance (Mujico et al. 2013). However, Lactobacillus 

strains were not specified, which is a limitation of that study, since different species associate in 

different ways with obesity. While Lactobacillus reuteri is positively associated with obesity 

(M Million et al. 2012) and Lactobacillus acidophilus with weight gain, Lactobacillus gasseri 

have been associated with weight loss in humans (Matthieu Million et al. 2012). 

 

Human studies evidences 

Regarding the effects of dietary fat types on human gut microbiota, data are still scarce. 

In a controlled study involving 10 subjects (nutritional status not indicated by the authors), fecal 

microbiota was altered 24h after the initiation of a high-fat/low-fiber or low-fat/high-fiber diet, 

without affecting the enterotypes (Wu et al. 2011). On the other hand, according to the authors 

of a cross-sectional study, in which  the fecal microbiota composition of 98 subjects was 
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assessed,  the enterotypes are associated with long-term eating habits. Consumption of a  diet 

rich in animal protein and fat, a typical diet of western societies, favors the Bacteroides 

enterotype, while the Prevotella enterotype prevails among people with higher fiber, fruit and 

vegetable consumption (Doré and Blottière 2015; Wu et al. 2011). It is noteworthy that both 

enterotypes are contemplated in Bacteroidetes phyla, which appears to be decreased overweight 

and obese individuals (Armougom et al. 2009). 

Considering the results obtained all the studies presented (animal and human 

evidences), it seems that there is still no consensus regarding the ways in which different dietary 

fat types modulate gut microbiota composition. However, there is strong evidence from animal 

studies that it affects microbiota, since the consumption of n-3 PUFAs and CLA was beneficial, 

unlike n-6 PUFA and SFA. Next, we will elucidate possible mechanisms that involves fat 

antibacterial capacity and consequently its effects on gut microbiota modulation. 

 

Mechanisms involved in obesity control  

Among the environmental factors that influence microbiota composition, diet is the 

easiest to modify and the most accessible form of therapeutic intervention (Wu et al. 2011). 

Therefore, dietary fat can modulate gut microbiota and play a role on obesity control. Fat 

regulates the pro/anti-inflammatory diet capacity, in addition to increasing the abundance of 

beneficial bacteria (Brahe, Astrup, and Larsen 2013), increasing SCFA production by favoring a 

healthier microbiota (Ríos-Covián et al. 2016). 

 

Antimicrobial activity and gut microbiota modulation 

Antibiotics inhibit enzymes involved in specific parts of the bacterial life cycle, 

increasing the chance of obtaining resistant strains (Ling et al. 2015). On the other hand, fat acts 

on the cellular envelope (Jackman et al. 2016), reducing mutations frequency that can result in 

resistant strains.  since it This may be another positive point regarding the use of fat as strategies 

to control the growth of intestinal bacteria related to obesity. . In a study conducted by our 

research group we confirmed that FFA, even in very small doses, have high antibacterial 
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activity (data not published yet). Thus, fat seem to be promising agents against the growth of 

undesirable bacteria, 

Dietary fat may decrease the number of some species and genera that are related to body 

weight excess (Chaplin et al. 2015; David et al. 2014). Fat antibacterial activity depends on its 

FA composition, as well as its structure and shape, such as carbon chain size and the presence, 

number, position and orientation of double bonds. The -OH group of the carboxyl group appears 

to be relevant for the FFA antibacterial activity (Zheng et al. 2005). In order to realize its 

activity, FFA need to be digested. Pancreatic lipase and colipase digests from 50 to 70% of 

dietary fat. These enzymes hydrolyze TAG and diacylglycerol (DAG) at the sn-1 and/or sn-3 

positions, resulting in 2-monoacylglycerol (2-MAG) molecules and free fatty acids (Birari and 

Bhutani 2007). 2-MAG is the main form of MAG absorbed in the small intestine. These 2-

MAG are rearranged resulting in MAG complete degradation, releasing glycerol and FFA. It 

seems that about 7% of FA resulting from digestion, after the consumption of normofat diet by 

healthy subjects, are not absorbed and are excreted through feces (Gabert et al. 2011). This 

fraction of FFA will pass through the small and large intestines, where it may exert 

antimicrobial effects, modulating the microbiota. 

In general, FA and MAG have a broad spectrum of antibacterial activity because they 

cause bacterial cell membrane lysis (Jackman et al. 2016), solubilizing it (Shilling et al. 2013) 

or by indirectly  affecting cellular metabolism (Sheu and Freese 1972) (Figure 1). They work as 

light surfactants that disrupt the  bacterial cells membranes, causing bacteriostatic or 

bactericidal effects (Heerklotz 2008). 

 

The amphipathic structure of FA exert a detergent effect , which may lead to the 

solubilization of the cell membrane leading to cellular lysis (Desbois and Smith 2010). Medium 

chain fatty acids (MCFA) and long chain fatty acids (LCFA) both saturated and unsaturated Fas  

may also prevent regulation of metabolism and/or energy production by the cell, inhibiting 

bacterial growth (Jackman et al. 2016). When they access cytoplasmic membrane of Gram-

positive and Gram-negative bacteria, FAs impair electrons transference, reduce ATP production 
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and deprive the cell of its essential energy source (Sheu and Freese 1972), affecting its survival. 

Among the SFA, lauric acid (C-12) shows the best antimicrobial activity, followed by 

capric acid (C-10) (Kabara et al. 1972). In vitro and in vivo (humans) studies showed lauric acid 

efficacy against Staphylococcus aureus (Nakatsuji et al. 2009). Obesity, as well as 

hyperglycemia and high adiposity related to overweight were associated with increased S. 

aureus population (Olsen et al. 2013). Lauric acid antimicrobial effect can be potentiated when 

glycerol is esterified, resulting in monolaurim, the medium chain MAG with higher antibacterial 

activity. Monolaurim is active against pathogenic Gram-positive bacteria and deteriorating 

bacteria (Batovska et al. 2009), but we could not identidy studies assessing its effect against 

GIT bacteria. Such studies are extremely relevant due to the relationship between gut 

microbiota and obesity. Considering the strong antimicrobial activity of lauric acid, it is 

assumed that if it acts against bacteria that are prevalent in the overweight people GIT, this FFA 

can modulate the gut microbiota of these people and thus it can help to control obesity. In 

addition, synergistic interactions may occur between monolaurim and food compounds such as 

phosphates, antioxidants and acidulants (Batovska et al. 2009), intensifying the antimicrobial 

effect. Lauric acid and capric acid also reduce the growth of S. aureus (Sado Kamdem et al. 

2008) and FA de novo biosynthesis (Sado-Kamdem, Vannini, and Guerzoni 2009). FA 

biosynthesis is essential for bacteria because they produce essential fat compounds, including 

their cell membranes (Zheng et al. 2005). 

Unsaturated FA (medium and long chains) tend to be more effective against Gram-

positive bacteria than Gram-negative bacteria and are generally more potent than SFA 

presenting the same carbonic chain (Kabara et al. 1972). The Gram-negative outer membrane 

behaves as a barrier for FA entry, while the Gram-positive cell wall allows the passage of FA 

through cytoplasmic membrane (Sado-Kamdem, Vannini, and Guerzoni 2009), facilitating 

antimicrobial agents action. The presence of double bonds  directly   increase the efficacy of the 

unsaturated FA. The naturally occurring double bonds in FA typically exhibit cis orientation 

and these tend to have higher antibacterial activity than those with double bonds in trans 

orientation (Kabara et al. 1972). This is probably because the structures of these trans 
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unsaturated FA resemble those of the saturated AG (Desbois and Smith 2010). Furthermore, 

Zheng et al. (2005) demonstrated that PUFA, similar to SFA, also hinder bacterial FA 

biosynthesis in vivo (Zheng et al. 2005), which, in turn, affects cell membrane composition, 

altering its function and impairs nutrientes uptake (Desbois and Smith 2010). 

 Alpha-linolenic (C-18: 3), linoleic (C-18: 2) and oleic (C-18: 1) acids also exert 

antimicrobial effects (Batovska et al. 2009; Huang and Ebersole 2010; Maia et al. 2007). The 

antibacterial effect of unsaturated FA is mainly mediated by inhibition of membrane or the 

cytosol enzymes, which are crucial for bacterial survival and growth (Sado-Kamdem, Vannini, 

and Guerzoni 2009; Zheng et al. 2005). Another possible explanation for unsaturated FA 

toxicity  is related to their auto-oxidation or peroxidation products, which are derived from the 

metabolic processes and which are antibacterial by themselves (Desbois and Smith 2010). 

The insertion of unsaturated FA into bacteria cytoplasmic membrane makes it more 

fluid and permeable, leading to loss of internal cellular content, inhibiting growth or causing 

cell death. If the membrane fluidity increases excessively, it becomes unstable, culminating in 

cellular lysis, which often occurs within minutes (Zhang et al. 2010). On the other hand, SFA 

may induce bacterial cell wall autolysis in some species, possibly by reducing membrane 

fluidity. Using a lipid bilayer model, a recent study demonstrated how SFA destabilizes the 

membrane, altering its morphology and consequently bacterial metabolism (Yoon et al. 2015).  

The specific interaction between antimicrobial fats and bacterial cell membrane still 

needs to be better understood. In fact, fats have a broad spectrum of mechanistic behavior, with 

inherent details of chemical structure and concentration of each compound. A few studies 

evaluated this potential against GIT microrganisms perhaps neglecting that effect, since the 

highest concentration of bacteria is found in the large intestine (Mowat and Agace 2014) and 

most FA are absorbed in the small intestine (Iqbal and Hussain 2009). Similar mechanism was 

observed in ruminants, through an in vitro study with n-3 and n-6 PUFA, which showed that 

these FA were effective against rumen bacteria (Maia et al. 2007). Limitations such as FA 

solubility and distribution of microrganisms along the GIT may make it difficult to precisely  

determine how much FA come into contact with specific types of bacteria in vivo (Maia et al. 



 11 

2007). Extrapolation of such results to humans, suggest that these FA are also effective against 

human GIT bacteria, being able to modulate gut microbiota of overweight people, and thus 

contribute to control obesity. 

 

SCFA: microbiota metabolite 

The ingestion of different fat types can increase SCFA production, regardless of the 

amount of carbohydrates and proteins ingested (Cox and Blaser 2013). SCFA are energy 

sources for colonic epithelium (Power et al. 2014). Gut microbiota acts on dietary fiber and 

protein that were not completely hydrolyzed by enzymatic reactions.  Fibers fermentation by 

colonic bacteria results in SCFA formation (Kimura et al. 2013), like acetic acid (C-2), 

propionic acid (C-3) and butyric acid (C-4) (Ríos-Covián et al. 2016). The latter, in particular, 

exerts beneficial effects on intestinal health (Power et al. 2014) by favoring the maintenance of 

a healthy intestinal barrier (Cox and Blaser 2013). The barrier integrity prevents LPS 

translocation into circulation, preventing weight gain, body adiposity and insulin resistance 

(Cox and Blaser 2013).  

There is a positive association between SCFA production by gut bacteria and  obesity 

control showing positive health impacts (Ríos-Covián et al. 2016). Recent evidence suggests 

that higher SCFAconcentration are associated with lower body fat content in animals (Marques 

et al. 2015).  

Besides supplying energy to enterocytes, SFCA transmit signals via G-protein-coupled 

receptors GPR41 and GPR43 (or free fatty acid receptors-FFAR 3 and 2, respectively). GPR41 

is also activated by propionate, butyrate and pentatonate, while GPR43 prefers propionate to 

other SCFA (Ichimura et al. 2009). SCFA activate enteroendocrine cells GPR41, which, in turn, 

induce peptide YY secretion, hormone responsible for reducing intestinal transit time and 

increasing satiety (Cox and Blaser 2013). SCFA also activate GPR43 receptors, expressed in 

adipose, immune and intestinal tissues. When SCFA bind to GPR43, they regulate energy 

uptake by the adipose tissue and prevent fat accumulation in adipocytes by promoting their use 

by the liver (Kimura et al. 2013). The activation of GPR43 by acetate reduces lipolysis and 
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activates adipogenesis, indicating a potential role of this FA on plasma fat profile regulation 

(Ichimura et al. 2009). Adipocytes treated with acetate and propionate had reduced lipolytic 

activity. This inhibition of lipolysis occurred due to FFAR2 activation, because this effect was 

suppressed in adipocytes of animals without this receptor (Ichimura et al. 2009). Furthermore, a 

study conducted in overweight adults has shown that increased concentrations of propionate 

prevented body weight gain. Propionate significantly stimulated the secretion of the peptide YY 

and glucagon-like peptide 1 (GLP-1), reducing food intake (Chambers et al. 2015). Taken 

together, these endocrine signals sent by the SCFA contribute to control obesity.  

Dietary supplementation with butyrate protected rats against obesity induced by 

saturated fat consumption. This effect was associated with increased energy expenditure, fat 

oxidation and maintenance of normal blood glucose levels (Gao et al. 2009). The improvement 

in glycemic control was also observed by a 50% decrease in fasting insulin concentration, an 

improvement in the response to intraperitoneal insulin tolerance test and a lower HOMA-IR in 

comparison to control group. These results suggest that butyrate prevented obesity and insulin 

resistance in animals (Gao et al. 2009).  

Finally, SCFA production reduces luminal pH, which in turn can inhibit undesirable 

microorganisms growth and increase absorption of some nutrients, contributing to host health 

(Macfarlane and Macfarlane 2012). The production of SCFA seems to play an important role in 

the maintenance of intestinal barrier, in microbiota composition (Ríos-Covián et al. 2016) and 

consequently in obesity treatment. 

Anti-inflammatory effects and others benefits 

Intestinal dysbiosis is associated with metabolic endotoxemia and low grade 

inflammation, both observed in obesity (Ley et al. 2006). In overweight subjects, the 

microbiome diversity was considered a predictive factor of weight loss and improvement of 

metabolism and inflammatory profile in response to hypocaloric diets (Cotillard et al. 2013). 

The connection between gut microbiota and low grade inflammation with infiltration of 

macrophages in the  adipose, muscular and hepatic tissues characterizes the progression of 

obesity to metabolic disorders (Brahe, Astrup, and Larsen 2013). 



 13 

The metabolism of propionate and butyrate has gained the researchers attention in 

recent years due to the connection between low concentration of bacterial populations 

producing these compounds in some diseases in which the inflammatory process is present 

(Ríos-Covián et al. 2016). It was observed a lower abundance of butyrate producing bacteria in 

feces of patients with type 2 diabetes compared with control group of healthy people (Qin et al. 

2012), suggesting a protective role of butyrate on metabolic diseases related to obesity. In 

addition, butyrate has anti-inflammatory properties. Butyrate is able to regulate intestinal barrier 

function and prevent LPS passage from the intestinal lumen into systemic circulation (Yang and 

Rose 2014), preventing the occurrence of metabolic endotoxemia and low-grade inflammation 

associated with obesity (Kaliannan et al. 2015).  

Diet affects cell membrane FA composition of several tissues, with PUFA w-3 being of 

most interest among researchers.  An increase MUFA and PUFA diet content tends to increase 

the content of these FAs in most membrane phospholipids (Abbott et al. 2012; Andersson et al. 

2002). In contrast, changes in SFA consumption do not interfere on FA membrane content. 

Adipose tissue FAs are the most responsive to dietary modifications of both SFA, MUFA and 

PUFA (Abbott et al. 2012). Dietary FA composition influences inflammation by transforming 

FA profile of cell membranes and adipose tissue, thus altering availability of substrates for pro-

inflammatory eicosanoids (such as arachidonic acid, C20:4 n-6) or antiinflammatory agents 

(eicosapentaenoic acid - C20: 5 n-3- and docosahexaenoic acid-C2:6 n-3) (Calder 2011). In 

summary, the excessive consumption of n-6 PUFA, such as in Western diets, leads to  n-3/n-6 

ratio imbalance. That imbalance culminates in arachidonic acid concentrations increase, and 

hence to the manifestation of  chronic inflammation and its associated diseases, such as obesity 

(Abbott et al. 2012). 

In addition, the interaction between tissues FA composition and gut microbiota plays an 

important role on anti-inflammatory effect exerted by n-3 PUFA. An increase in tissues n-3 

PUFA content increases the production and secretion of alkaline phosphatase intestinal enzyme, 

which induces changes in microbiota composition. This leads to decreased LPS production and 

gut permeability, reducing metabolic endotoxemia and inflammation (Kaliannan et al. 2015). 
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Intestinal alkaline phosphatase is an endogenous antimicrobial peptide with numerous 

physiological functions (Lallès 2010). It is highly expressed in the small intestine, being 

secreted by apical enterocytes into the lumen and goes to the large intestine (Kaliannan et al. 

2015). That enzyme also inhibits Gram-positive bacteria growth by dephosphorylation of ATP, 

to prevent Escherichia coli and other Gram-negative overgrowth due to its ability to 

dephosphorylate the LPS located on the outer membrane (Koyama et al. 2002) and promote  

TGI commensal bacteria growth (Malo et al. 2014). Thus,  n-3 PUFA (as EPA and DHA) stand 

out for their anti-inflammatory properties (Coelho et al. 2016), which are related to reduction of 

metabolic endotoxemia (Kaliannan et al. 2015) and positive changes in gut microbiota 

(Pusceddu et al. 2015). 

In addition to SCFA, human gut microbiota also synthesizes vitamin K in the 

menaquinone form (OHSAKI et al. 2006). Vitamin K reduces triglycerides concentration, body 

fat, and LPS induced inflammation favoring obesity and comorbidities control (Sogabe et al. 

2011) and (OHSAKI et al. 2006). High vitamin K consumptio was also associated with 

improved insulin sensitivity, lower waist circumference, lower BMI and systemic arterial blood 

pressure (Dam et al. 2015). Overweight people usually present a microbiota composition that 

impairs vitamin K production by gut bacteria. Thus, indirectly, the modulation exerted byfat on 

colonic bacterial population can also favor obesity control via vitamin K synthesis and its 

benefits. 

 

Conclusion and perspectives  
In conclusion, the results of these studies suggest that the modulation of specific 

bacterial populations abundance, such as increasing Bacteroidetes and reducing Firmicutes, 

may be beneficial on obesity treatment. The quality of dietary fat directly affects in different 

ways the integration between FFA, gut microbiota and obesity. Although CLA promotes 

beneficial changes on gut microbiota composition, further studies are needed to better 

understand CLA isomers effect on microbiota and host health. Consumption of n-3 PUFA 

promotes favorable changes in obese gut microbiota, turning it similar to eutrophic people, as 
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opposed to SFA. Due to the paucity of controlled long-term clinical studies in humans, this 

complex interaction is not fully understood yet by scientific community. However, the strong 

antimicrobial activity of FFA, as well as its side effects on gut microbiota (SCFA production, 

anti-inflammatory effect and vitamin K synthesis) suggest that especially PUFA may be 

effective on obesity treatment, acting as the link between intestine and host metabolic health. 
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Figure 1. Possible mechanisms involved in bacterial cell death induction or bacterial growth 

inhibition exerted by free fatty acids, which in turn may change the host metabolism. FFA: free 

fatty acids. *Mechanism established for saturated fatty acids. ** Mechanism established for 

unsaturated fatty acids. 
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Table 1. Studies in which the effects of dietary fat on gut microbiota was assessed. 

FA Intervention Duration Effects on microbiota Ref. 

 

 

 

 

 

 

 

 

 

 

 

 

 

SFA 

 

 

CD or no carbohydrate 

HF (72% fat: corn oil and 

lard) 

 

4 w HFD  Bacteroides, Prevotella 

and Lactobacillus ssp.;  

Bifidobacterium spp. 

Cani et al. 

(2008) 

Polysaccharides rich diet 

(16% fat), LFD or HFD 

(41% SFA and PUFA) 

 

8 w HFD  bacterial diversity and 

Bacteroidetes;  Firmicutes 

(Molicutes class). 

 

Turnbaugh 

et al. 

(2008) 

LFD or HFD (40,6% fat 

as beef tallow: 41% SFA, 

17% trans, 35% MUFA 

and 7% PUFA) 

 

8 w HFD  Catenibacterium 

mitsuokai, Clostridium 

innocuum, Eubacterium 

dolichum, Erysipelotrichi and 

Enterococcus;  Bacteroidetes. 

 

Turnbaugh 

et al. 

(2009b) 

CD or HFD (45% fat: 

87,6% lard and 12,3% soy 

oil)  

 

21 w HFD  Bacteroidetes and  

Firmicutes, Clostridiales and 

Delta-Proteobacteria. 

Hildebrandt 

et al. 

(2009) 

LFD (10% lip) or HFD 

(45% fat: lard) 

 

15 w HFD  Firmicutes and  

Proteobacteria e 

Bifidobacterium. 

 

Murphy et 

al. (2010) 

LFD (5,2% lip) or HFD 

(34,9% fat) 

 

25 w HFD  Desulfovibrionaceae 

and  Bifidobacterium spp. 

 

Zhang et al. 

(2010) 

LFD (5% lip) or HFD 

(38% fat: lard, milk or 

sunflower oil)  

3 w HFD (milk and sunflower oil) 

 Firmicutes and  

Bacteroidetes. LFD  

Firmicutes and  other phyla 

abundance. 

 

Devkota et 

al. (2012) 

 CD (4% lip), HFD (34,3% 

fat as: 16,1% SFA, 12,6% 

19 w HFD  Enterobacteriales and 

 fecal DNA total contente. 

Mujico et 

al. (2013) 
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MUFA and 5,5% PUFA) 

 

 

CD (12% fat: 61,5% soy 

oil and 38,5% lard) or 

HFD (43% fat: 35,5% soy 

oil 64,5% lard) 

7 w HFD  Bifidobacterium spp. 

 

Chaplin et 

al. (2015) 

 

 

 

PUFA 

CD (9% lip), HFD (40% 

fat: 20% canola oil, 20% 

corn oil or 19% corn oil + 

1% fish oil) 

 

5 w HFD with fish oil protected 

against bacterial overgrowth 

caused by n-6 PUFA. 

Gosh et al. 

(2013) 

CD (4% fat) or HFD + n -

3 PUFA (3g/kg/day of 

EPA and DHA) 

7 w n -3 PUFA Firmicutes and 

Lactobacillus group. 

Mujico et 

al. (2013) 

 

 

MUFA 

 

CD (4% fat) or HFD + 

oleic acid-derived 

compound (1,5g/kg/day)  

7 w Oleic acid-derived compound 

reestablished total DNA 

content similar to CD and  

Bifidobacterium e 

Bacteroidetes. 

 

 

Mujico et 

al. (2013) 

 

 

 

 

CLA 

CD (12% fat: 61,5% soy 

oil and 38,5% lard) or 

64,5% lard) or HFD + 

CLA (6 mg) 

7 w HFD  Bifidobacterium spp. 

CLA supplementation  

Bacteroides and Prevotella. 

 

 

Chaplin et 

al. (2015) 

 

CD (6,2% fat) or 0,5% 

CLA supplementation 

(6,7% fatt) 

 

 

8 w 

CLA supplementation  

Firmicutes e  Bacteroidetes; 

 Desulfovibrionaceae, 

Lachnospiraceae and 

Peptococcaceae e  

Porphyromonadaceae 

 

Marques et 

al. (2015) 

: increased; : decreased; FA: fatty acid; CD: control diet; HFD: high-fat diet; LFD: low-fat 

diet; w: weeks; d: days; SFA: saturated fatty acid; PUFA: polyunsaturated fatty acid; MUFA: 

monounsaturated fatty acid; CLA: conjugated linoleic acid. 

 

 


